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Abstract. We present a study of some properties of program translations in
the context of logic programming. In particular we provide, under the answer set
semantics, a translation for arbitrary propositional theories into the simple class
of disjunctive programs. We also show how syntactic and semantic properties
of translations can be related. The work follows a line of research that applies
mathematical logic to study notions and concepts in logic programming.

1 Introduction

Program translations are functions that map logic programs in a given class
of programs to another class. Translations for logic programs can be very
interesting for several different reasons: they can allow to simplify the struc-
ture of programs (Osorio et al. 2001; Pearce et al. 2002; Sakama and Inoue
1998), to derive correct programs from specifications (Pettorossi and Proietti
1998), and even to perform program updates and belief revision for agent
systems (Alferes et al. 2002; Eiter et al. 2000).

We are interested in the study of the properties that translations should
have in order to preserve the semantical meaning of programs. In particular
we want to investigate this sort of properties in the context of Answer Set
Programming (ASP). This semantic, originally introduced by Gelfond and
Lifschitz (1988) and generalized later to include broader classes of programs
(Lifschitz et al. 1999; Osorio et al. 2003), rapidly became a popular logic
programming paradigm.

The great power of this semantic to express a wide variety of problems,
and the existence of very efficient software to compute answer sets, allowed
the development of several real life applications based on ASP. The possi-
bilities range from solving combinatorial problems, modeling logic agents,
planning (Dimopoulos et al. 1997), knowledge representation (Baral 2003)
and querying deductive databases (Eiter et al. 1997); just to mention a few.
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Previous work from Janhunen (2001) studies several syntactic and se-
mantic properties of translations for arbitrary semantic operators. This
kind of properties are relevant for several theoretical and practical reasons,
as we will discus along this presentation. Pearce et al. (2002) shows, in par-
ticular, a translation for programs containing nested expressions to the class
of disjunctive programs that preserves the original semantics of programs.

In this paper we follow an approach, motivated from (Pearce 1999; Osorio
et al. 2003), that tries to explain answer set programming in terms of
intermediate logics. We provide a translation, with nice syntactical and
semantical properties, that can reduce propositional theories to the class of
nested programs considered by Pearce et al. (2002).

We also show that, under certain simple assumptions, the syntactic prop-
erties of a translation that preserves the answer set semantics can be enough
to be sure that the translation can also preserve the semantics for partially
translated programs. This sort of results show how the use of intuitionis-
tic and other intermediate logics is an approach that can help us to better
understand the notion and concepts of answer sets.

Because of the lack of space, the proofs of some minor results were left
out from the main discussion of the paper. A complete version of the paper,
including an appendix with all the omitted proofs, will be made available at
http://www.udlap.mx/~ma108907/papers.html.

2 Background

We review in this section the language of propositional logic used to describe
logic programs. We briefly introduce intuitionistic and some multivalued-
logics, state some notation and basic results. A more detailed presentation
can be found at (Mendelson 1987; Zakharyaschev et al. 2001). We also
define several concepts for logic programming: classes of logic programs,
semantic operators and answer sets. Original definitions and related results
are available in (Lloyd 1987; Lifschitz et al. 1999; Osorio et al. 2003).

Propositional Logic We consider a formal language built from an alpha-
bet containing: a denumerable set L of elements called atoms, the 2-place
connectives ∧, ∨, →, the 0-place connective ⊥, and auxiliary symbols (, ).
Formulas are constructed as usual in logic. The formula > is introduced as
an abbreviation of ⊥ → ⊥, ¬A as an abbreviation of A → ⊥, and A ↔ B
to abbreviate of (A→ B) ∧ (B → A). The notation A← B is just another
way of writing the formula B → A.

A theory is a set of formulas, we will restrict our attention, however,
to finite theories. We use Prp to denote the set of all finite propositional
theories. For a given theory T its signature is the set LT of atoms occurring
in the theory T . A literal is either an atom a or a negated atom ¬a. Given
a theory T we also define the negated theory ¬T = {¬A | A ∈ T} and, for
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a set of atoms M , the closure of M (w.r.t. T ) as M = M ∪ ¬(LT \M).

Intermediate Logics Intuitionistic logic, denoted I, was developed as an
alternative to classical logic. It explains the meaning of the connectives in
terms of knowledge or provability, instead of absolute truths. We consider
a formulation of intuitionistic logic where a theorem is a formula that can
be proved using the ten axioms that define I and modus ponens as inference
rule (van Dalen 1980).

Gödel also defined the multivalued logics Gi, with i truth values, where a
model of a formula is a truth assignment to the atoms that, when propagated
over its connectives, evaluates to some designated true value. A formula is
a tautology if it is true for every possible truth assignment. The two valued
logic G2 corresponds to the classical logic, denoted C. (Mendelson 1987)

It was shown that the set of intuitionistic theorems is a proper subset
of the set of classical tautologies, and that the logics Gi lie in between. So
we call intermediate logics to those logics whose set of provable formulas is
between intuitionistic and classical logics (inclusive). A proper intermediate
logic is an intermediate logic that is not the classical one.

Notation and Basic Results We use the notation `X F to denote that
the formula F is provable (a theorem or tautology) in logic X. If T is a
theory we use the symbol T `X F to denote `X (F1 ∧ · · · ∧ Fn) → F for
some formulas Fi ∈ T . We say that a theory T is consistent if it is not the
case that T `C ⊥. It is easy to prove that the definition of a theory of being
consistent does not depend on the logic chosen. The proof is given in the
appendix at the end of the full version of this document.

We also introduce, if T and U are two theories, the symbol T `X U to
denote that T `X F for all formulas F ∈ U . We will write T X U to denote
the fact that (i) T is consistent and (ii) T `X U . Finally we say that two
theories T1 and T2 are equivalent (w.r.t. logic X), denoted T1 ≡X T2 if it
holds that both T1 `X T2 and T2 `X T1.

Logic Programs In order to introduce the terminology of logic programs,
using the propositional logic we have just presented, we define a clause as a
formula H ← B where principal connective is implication. The formulas H
and B are known as the head and the body of the clause respectively.

The special case of a clause with the form ⊥ ← B is known as a con-
straint, in this case the head is said to be empty. Each formula H that does
not have implication as the principal connective can be associated with the
clause H ← >, this kind of clauses are known as facts. Then we can define a
logic program as a finite set of clauses and a class of logic programs as some
set of logic programs.

There are several kind of clauses defined in literature. The head and the
body of augmented clauses are constructed from the connectives ∧, ∨ and ¬
arbitrarily nested. Note that the general case of implication is not allowed.
The clause ¬(a ∧ ¬b) ← p ∨ (¬q ∧ r) is, for example, augmented while the
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clause a ← (b → c) is not. An augmented program is a set of augmented
clauses and Aug denotes the class of all augmented programs.

Another, more restricted, class is the disjunctive one. A disjunctive
clause allows only a (non-empty) disjunction of positive literals in the head
and a conjunction of literals in the body, for example a ∨ b ← p ∧ q ∧ ¬r.
Similarly, a disjunctive program is a set of disjunctive clauses and Dis is the
class of all disjunctive programs. Observe that we have Dis ⊂ Aug ⊂ Prp.
Answer Sets Given a class of programs C, a semantic operator Sem is a
function that assigns to each program P ∈ C a set of sets of atoms M ⊆ LP .
These sets of atoms are usually some “preferred” models of the program P .
One popular semantic operator is the answer sets AS operator. We consider
the definition provided in (Osorio, Navarro, and Arrazola 2002) that extends
the notion of an answer set to the whole set of propositional formulas.

Definition 1. If P ∈ Prp then AS(P ) =
{
M ⊆ LP | P ∪ ¬¬M I M

}
.1

3 Conservative Transformations

Suppose that we have a logic program P and we want to compute AS(P ).
We could simplify this task if we are able to construct some other simpler
program P ′, such that the answer sets of P and P ′ are somehow related,
compute AS(P ′) and recover the answer sets of the original P . It will be
important that this “recovery” of the answer sets of P , knowing those of P ′,
can be done trough a simple and efficient method. A conservative transfor-
mation is a relation between logic programs with this kind of properties.

Definition 2. Let Sem be a semantic operator defined for a class of pro-
grams C and let P, P ′ ∈ C. We say P ′ is a conservative transformation of
P , denoted P

Sem−−−→ P ′, if LP ⊆ LP ′ and

Sem(P ) =
{
M ∩ LP |M ∈ Sem(P ′)

}
.

A conservative extension, as presented in (Baral 2003), is a conservative
transformation where the programs also satisfy P ⊆ P ′. Our definition is
more general since it allows the program to be modified or “transformed”
and not only extended. As far as we know this definition is new, and so the
results presented in this section are all original.

A conservative transformation of a logic program P can, possibly, intro-
duce new atoms (those in LP ′ \LP ) in order to achieve simplifications. But,
if we ignore this newly introduced atoms, we obtain exactly the answer sets
of P . We refer to this new atoms in LP ′ \ LP as the reserved atoms of the
transformation.

1The original definition uses the notation ¬M ∪¬¬M̃ , where M̃ = LP \M , instead of
the set ¬¬M , where M = M ∪¬(LP \M). It is easy to verify that the two conditions are
equivalent since `I ¬a ↔ ¬¬¬a.
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It is easy to verify that conservative transformations define a transitive
relation, a formal proof is included in the appendix. Much more surprising
is that arrows in the notation of conservative extensions can sometimes be
traveled backwards. If a logic program Q is a conservative extension of two
programs P and R then, under the premise that LP ⊆ LR, we can also
relate the answer sets of P and R by a conservative transformation.

Proposition 1. If P
Sem−−−→ Q, R

Sem−−−→ Q, and LP ⊆ LR then P
Sem−−−→ R.

Proof. Take M ∈ Sem(R), since R
Sem−−−→ Q there must be N ∈ Sem(Q) such

that M = N ∩ LR. But, since P
Sem−−−→ Q, we have that N ∩ LP ∈ Sem(P ).

Observe, since LP ⊆ LR, that M ∩ LP = (N ∩ LR) ∩ LP = N ∩ LP . Thus
we obtain M ∩ LP ∈ Sem(P ).

Now take M ∈ Sem(P ), since P
Sem−−−→ Q there must be N ∈ Sem(Q) such

that M = N ∩ LP . But, since R
Sem−−−→ Q, we have that N ∩ LR ∈ Sem(R).

Observe, since LP ⊆ LR, that (N ∩ LR) ∩ LP = N ∩ LP = M . Then
N ∩ LR ∈ Sem(R) is the model such that (N ∩ LR) ∩ LP ∈ Sem(P ).

The following proposition allows us to construct a very simple conserva-
tive translation for the semantic of answer sets. It can be used to extend
the language of a given program without modifying its answer sets. This
result will be used later in the proof of Theorem 3.

Proposition 2. Given a set of atoms A, let L = {a← a | a ∈ A}. For any
program P ∈ Prp, P

AS−−→ P ∪ L.

Another particular case of a conservative transformation, which is pre-
sented in the following proposition, stands that is possible to introduce new
atoms as a definition of a formula that can be expressed using the atoms
already in the program.

Proposition 3. Let P ∈ Prp. Given a formula F such that LF ⊆ LP and
an atom x /∈ LP , P

AS−−→ P ∪ {x↔ F}.

Conservative transformations may seem very effective in the context of
logic programming. But they dot not satisfy, in general, an important prop-
erty for concrete programming applications. We would expect that making
a conservative transformation of one piece of a program would also result,
“globally”, in a conservative transformation for the whole program.

This is not true for simple conservative transformations as just defined.
Consider the two programs P1 = {a← ¬b} and P2 = {a, b← b}. Accord-
ing to Definition 2, P2 is a conservative translation of P1 in the answer set
semantics since they both have AS(P1) = AS(P2) = {{a}}. However, re-
placing P1 with P2 in the larger program P = {a← ¬b, b}, to obtain the
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program P ′ = {a, b← b, b}, will break this relation. Now P has only one
answer set {b}, while P ′ has the answer set {a, b}.

In order to ensure that making local transformations of code inside logic
programs will preserve global equivalence, we introduce the notion of a
strong conservative transformation.

Definition 3. Let Sem be a semantic operator for a class of programs C.
Given two logic programs P, P ′ ∈ C, such that LP ⊆ LP ′ , we say that P ′

is a strong conservative translation of P , denoted P
Sem∗
−−−−→ P ′, if for every

program Q, such that LQ ∩ (LP ′ \ LP ) = ∅, P ∪Q
Sem−−−→ P ′ ∪Q.

The condition LQ ∩ (LP ′ \ LP ) = ∅ states that the programs Q, used to
extend P , may not contain any of this reserved atoms of the transformation.
In an actual implementation we could ensure this condition by defining
a special set of atoms reserved for internal translations and not available
to the user for writing programs. As we may expect, strong conservative
translations also define a transitive relation.

In the particular case when L′P = LP , when there are no reserved atoms,
this relation is known as a strong equivalence between programs. This notion
was originally introduced in (Lifschitz, Pearce, and Valverde 2001) where the
authors provide a characterization of strong equivalence for augmented pro-
grams, using the answer set semantics, in terms of the logic HT equivalent to
the 3 valued logic G3. These relations between answer sets and intermediate
logics are also studied in (Navarro 2002) where the characterization of strong
equivalence is revised and extended to arbitrary propositional theories.

Theorem 1. (Lifschitz et al. 2001; Navarro 2002) Let P, P ′ ∈ Prp, such
that LP = LP ′. P

AS∗
−−−→ P ′ if and only if P ≡G3 P ′.

4 Program Translations

A translation is a function Tr: C → C ′, where C and C ′ are two classes of
logic programs. Janhunen (2001) discusses important properties of program
translations, relevant to logic programming, for arbitrary semantic opera-
tors. Particular applications for the answer set semantics are also given in
(Pearce et al. 2002).

Definition 4. (Janhunen 2001; Pearce et al. 2002) Let Sem be a semantic
operator for a class of programs D, a translation Tr: C → C ′, where the
classes C,C ′ ⊆ D are closed under unions2, is said to be:

polynomial if the time required to compute Tr(P ) is polynomial with re-
spect to the number of symbols in P .

2A class of programs C is closed under unions if P1, P2 ∈ C implies that P1 ∪ P2 ∈ C.
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faithful if, for all programs P ∈ C, P
Sem−−−→ Tr(P ).

strongly faithful if, for all programs P ∈ C, P
Sem∗
−−−−→ Tr(P ).

modular if, for all programs P1, P2 ∈ C, Tr(P1 ∪ P2) = Tr(P1) ∪ Tr(P2).

reductive if C ′ ⊆ C and Tr(P ′) = P ′ for all programs P ′ ∈ C ′.3

The property of a translation being polynomial (P) is related with the
order of complexity that an actual computer implementation of the trans-
lation should have. A faithful (F) translation can be applied to a program
preserving the semantics, while a strongly faithful (S) translation can also
be applied locally to some section of the program without altering the se-
mantics.

The last two properties deal with the form of the translation, not with
its particular semantics. If a translation is modular (M) we could split a
program into several pieces and then perform the translation piece by piece.
A reductive (R) translation maps one class of programs into some given
subclass, and the programs that are already in the subclass will not been
modified by the translation.

As a form of notation we say that a translation is PFM if it is simultane-
ously polynomial, faithful and modular. Analogously, a PSMR translation
is polynomial, strongly faithful, modular and reductive. We can drop any
of the letters from the notation if we are just interested in some properties.

Proposition 4. (Pearce et al. 2002) There is a PSM translation, for the
the semantic of answer sets, AugDis : Aug→ Dis.

Using the machinery of logic, based on Definition 1 and results like Theo-
rem 1, it is also possible to provide a translation of logic programs, containing
arbitrary propositional formulas, into augmented programs.

Definition 5. If a formula F contains a proper subformula A→ B, where
A and B contain no more implications, we say that A → B is a simple
embedded implication of the formula F . We define recursively the translation
PrpAug : Prp→ Aug for every P ∈ Prp, as follows:

(i) P contains no clause with embedded implications. Then P is already
an augmented program and PrpAug(P ) = P .

(ii) P contains a clause F with some embedded implications. Take one
simple embedded implication, A→ B, from the formula F ; and take a
new atom x ∈ L\LP not already in P . Let F ′ be the formula obtained

3The definition of a modular translation we introduce here corresponds to the one given
in (Pearce et al. 2002). Janhunen (2001) presents a different definition which corresponds
to modular + reductive (when C′ ⊆ C is satisfied).
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by replacing the occurrence of A→ B in F with the new atom x, and
let P ′ be the program obtained by replacing F with F ′ in P . Also
let ∆ = {x ∧A→ B, ¬A ∨B → x, x ∨A ∨ ¬B}. We finally define
PrpAug(P ) = PrpAug(P ′ ∪∆).

The recursive definition of PrpAug is well-founded since, on each recur-
sion step, the program P ′ ∪∆ has one implication less than P .

Proposition 5. The translation PrpAug : Prp→ Aug is PSMR.

Proof. The number of recursion steps required to complete the translation
is exactly the number of embedded implications in the program, therefore
the translation is polynomial. It is also clear, since PrpAug acts on one
clause at a time and does not modify programs already in the augmented
class, that the translation is modular and reductive.

To justify that the recursion step is a strong conservative transformation
observe that, from Proposition 3, P

AS−−→ P∪{x↔ (A→ B)}. The key point
is that {x↔ (A→ B)} ≡G3 ∆ and, therefore, we also have the equivalence
P ∪{x↔ (A→ B)} ≡G3 P ′∪∆. Using Theorem 1, and transitivity, we end
up with P

AS−−→ P ′ ∪∆.

Current implementations of the answer set programming paradigm res-
trict the syntax of formulas to the class of disjunctive programs where, in
particular, implication in the body is not allowed. A common work around
to this limitation was to use the intuitive equivalence (A→ B)↔ (¬A∨B).
This practice, however, caused sometimes the appearance of unexpected
models (or the miss of expected ones) when computing answer sets.

The first rule x∧A→ B in our equivalence is used to model the behavior
of the implication symbol in the head. The second rule ¬A ∨B → x comes
from the classical intuitive meaning of the implication connective. This two
rules, however, are not enough to provide the required equivalence in the
logic G3. This could possibly explain the unexpected results obtained from
the erroneous work around. The less intuitive third rule x∨A∨¬B required
was discovered, in fact, by an examination of the G3 models of the original
formula x ↔ (A → B). This points out the importance of results like
Theorem 1 that allows us to better understand the notion of answer sets,
proposing the logic G3 as a more correct guide for our intuition.

5 Properties of Translations

In the previous section we provided a translation for the class of propo-
sitional theories into the class of augmented programs and, together with
other translations (Pearce et al. 2002), it is possible to reduce them to the
class of disjunctive programs. Using any of the popular answer set finders for
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disjunctive programs, dlv4 or smodels5, it is possible to provide an efficient
method to compute answer sets for propositional theories. The following
theorem is a direct consequence from Propositions 4 and 5.

Theorem 2. There is a translation PrpDis : Prp → Dis, which is PSM for
the semantic of answer sets.

Observe that the properties of strongly faithful and modular are some-
how related. Both notions can be interpreted in terms of a program that
has been split into several pieces. A strongly faithful translation can be
applied to one of these pieces preserving the semantics of the program. On
the other hand, a modular translation can also be applied “piece by piece”
to the program but we do have to complete the translation for each one of
the pieces. It is possible, indeed, to construct a FM translation which is not
strongly faithful.

Example 1. Let C be the class of disjunctive programs that have exactly
one atom in the head and zero or one atoms in the body. Also let C ′ be
the class of disjunctive programs that have exactly two atoms in the head
and zero or two atoms in the body. Clearly both C and C ′ are closed under
unions. For each atom a in the user language let a′ be a new reserved atom.
The translation Hide: C → C ′ is defined mapping each clause, a or a ← b,
as follows:

Hide({a}) = {a′ ∨ a′, a ∨ a← a′ ∧ a′}
Hide({a← b}) = {a′ ∨ a′ ← b′ ∧ b′, a ∨ a← a′ ∧ a′, b ∨ b← b′ ∧ b′}

It is clear, by construction, that the translation is modular. The translation
is also faithful since it rewrites the original program, with new reserved
atoms, and appending a set of rules, equivalent to a ← a′, in order to
recover answer sets in the original signature.

Consider the program P = {a← b, b} ∈ C. Both P and Hide(P ) have
the same answer sets. If we apply the translation, however, just to the first
clause the program Hide({a← b}) ∪ {b} will have different semantics. The
rule a← b is now “hidden” and the existence of the fact b can not be used
anymore to infer a. The translation is not strongly faithful.

We will see, however, that there is a wide class of interesting and useful
translations where the syntactic properties of being modular and reductive
are enough to be strongly faithful. The following theorem shows how, in the
context of the answer sets semantics, this can be possible.

Theorem 3. Given two classes of logic programs C and C ′, closed under
unions and such that Dis ⊆ C ′ ⊆ C ⊆ Prp. If the translation Tr: C → C ′ is
FMR in the answer set semantics then it is also strongly faithful.

4http://www.dbai.tuwien.ac.at/proj/dlv/
5http://www.tcs.hut.fi/Software/smodels/
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Proof. Let Q ∈ Prp be a program containing no atoms from LTr(P ) \LP and
let L =

{
a← a | a ∈ LTr(P )

}
, so that the signatures are LP ⊆ LTr(P ) = LL.

Construct then the disjunctive program D = PrpDis(Q ∪ L) and, since
Theorem 2 states that the translation is strongly faithful, Q ∪ L

AS∗
−−−→ D.

Neither P nor Tr(P ) contain reserved atoms from LD \ LQ∪L. Using
the result from Proposition 2 and from the definition of strongly faithful
we obtain that P ∪ Q

AS−−→ P ∪ (Q ∪ L) AS−−→ P ∪ D and, similarly for the
translated program, Tr(P ) ∪Q

AS−−→ Tr(P ) ∪ (Q ∪ L) AS−−→ Tr(P ) ∪D.
Now, since the translation Tr is faithful, we have P ∪D

AS−−→ Tr(P ∪D).
Also, from the modular and reductive properties, we obtain Tr(P ∪ D) =
Tr(P )∪Tr(D) = Tr(P )∪D. Thus we get P ∪Q

AS−−→ P ∪D
AS−−→ Tr(P )∪D

and, by Proposition 1, we can finally conclude P ∪Q
AS−−→ Tr(P ) ∪Q.

6 Conclusions

We have presented in this paper a translation that can be used to map ar-
bitrary propositional theories into the class of simple disjunctive programs.
Moreover, the translation is strongly faithful and has good syntactical prop-
erties. Previous work, from Pearce et al. (2002), presented a similar trans-
lation but only for programs in the augmented class. Using results from
Lifschitz et al. (2001) and Osorio et al. (2003) we could show how to extend
this translation for any propositional theory.

The existence of such translation has some theoretical significance. It
shows, in particular, that the class of disjunctive programs is as expressive as
the class of propositional theories. Also an important practical consequence
of the result is that it allows the development of software tools to compute
answer sets for logic programs containing arbitrary propositional formulas.

We also exhibit how, for a wide range of program translations, the con-
ditions of being faithful, modular and reductive are sufficient to state that
the translation is also strongly faithful. The main assumption required for
this result to hold is that the translation takes programs from a class of logic
programs to some, more simple in principle, subclass.

It is important to stress out the fact that this results were obtained
through the “Logic Programming via Logic” approach initiated by Pearce
(1999) and developed later by Osorio et al. (2003). Thus showing how the
use of intermediate logics in the study of answer sets can be useful to develop
the theory and applications of answer sets. This could open a new line of
research and provide a lot of feedback between this two areas.
Acknowledgments This research is sponsored by the Mexican National
Council of Science and Technology, CONACyT (project 37837-A).
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Appendix: Omitted Proofs

It is stated in the paper that the property of a program of being consistent
does not depend on the logic underlying. This result is proved precisely in
Proposition 6 and is based on the following well known results.

Lemma 1. (Zakharyaschev et al. 2001) If the symbol ⊂ denotes the proper
set inclusion of the sets of provable formulas, intermediate logics are ordered
as follows: I ⊂ · · · ⊂ Gi+1 ⊂ Gi ⊂ · · · ⊂ G3 ⊂ G2 = C.

Lemma 2. (Mendelson 1987; Osorio et al. 2003) Given a theory T and a
formula F , T `C F if and only if T `I ¬¬F .

Proposition 6. Let X and Y be two logics, selected among classical and
intermediate logics. A theory P is consistent with respect to logic X iff it is
consistent with respect to logic Y.

Proof. It suffices to show that if P is inconsistent, with respect to X, then
P is also inconsistent with respect to Y. Suppose that there is a theory P
such that P `X ⊥ then, by Lemma 1, P `C ⊥. By Lemma 2 we get that
P `I ¬¬⊥. But ¬¬⊥ → ⊥ is an intuitionistic theorem, so P `I ⊥. Finally,
again by Proposition 1, we conclude that P `Y ⊥.

We present also the proofs that both conservative transformations and
strong conservative transformations define transitive relations.

Proposition 7. If P
Sem−−−→ Q and Q

Sem−−−→ R then P
Sem−−−→ R.

Proof. Take M ∈ Sem(P ) then, since P
Sem−−−→ Q, there is M ′ ∈ Sem(Q)

such that M = M ′ ∩ LP and, since Q
Sem−−−→ R, there is M ′′ ∈ Sem(Q) such

that M ′ = M ′′ ∩ LQ. It follows, since LP ⊆ LQ, that M = M ′′LP for some
model M ′′ ∈ Sem(R). Similarly, if M ∈ Sem(R) then M ∩ LQ ∈ Sem(Q)
and (M ∩ LQ) ∩ LP = M ∩ LP ∈ Sem(P ).

Proposition 8. If P
Sem∗
−−−−→ Q and Q

Sem∗
−−−−→ R then P

Sem∗
−−−−→ R.

Proof. Let T be a program such that LT ∩ (LR \ LP ) = ∅. Observe that,
since LP ⊆ LQ ⊆ LR, we have that LT ∩ (LQ \ LP ) = LT ∩ (LR \ LQ) = ∅.
Then, since P

Sem∗
−−−−→ Q and Q

Sem∗
−−−−→ R, we have that P ∪T

Sem−−−→ Q∪T and
Q∪T

Sem−−−→ R∪T . From Proposition 7 it follows that P ∪T
Sem−−−→ R∪T .
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The following are other simple propositions, the two particular cases of
conservative transformations, that were left out from the paper because of
the lack of space.

Lemma 3. Let P and Q be two theories and let F be a formula such that
LP∪{F} ∩ LQ = ∅. If Q is consistent and P ∪Q `X F then P `X F . Where
the logic X is either classical or an intermediate logic.

Proof. Since Q is consistent there is a two-valued model M of Q. In the
proof of P ∪Q `X F replace each atom in a ∈ Q with > if a ∈M and with
⊥ if a /∈ M . Since M is a model of Q all premises in Q will be mapped to
tautologies. The restriction LP∪{F} ∩ LQ = ∅ ensures that atoms in P and
F will not be altered by this transformation. Thus we end up with a proof
for P `X F .

Proposition 9. Given a set of atoms A, let L = {a← a | a ∈ A}. If P is
a logic program then P

AS−−→ P ∪ L.

Proof. We will prove that, in particular, the sets AS(P ) = AS(P ∪ L). Let
M ∈ AS(P ) then, by definition, P ∪ ¬(LP \M) ∪ ¬¬M I M . Since the
program P ∪ ¬(LP \M) ∪ ¬¬M is consistent it has a classical model and,
if we extend that model evaluating to false all atoms in L \ LP , we obtain
that also P ∪¬(LP \M)∪¬(LL \LP )∪¬¬M is consistent. Moreover, since
M ⊆ LP , we have (LP \M)∪ (LL \LP ) = LP∪L \M . So, since L is a set of
intuitionistic theorems, we obtain P ∪ L ∪ ¬(LP∪L \M) ∪ ¬¬M I M and,
by definition, M ∈ AS(P ∪ L).

For the converse, if M ∈ AS(P ∪ L), remove the set of theorems L from
the definition of answer sets to obtain P ∪ ¬(LP∪L \ M) ∪ ¬¬M I M .
Observe now that M ⊆ LP since, if we suppose that there is an atom a ∈M
with a /∈ LP then a would only appear in the set of premises as ¬¬a and, by
Lemma 3, we end up with ¬¬a `I a; but this is not possible since ¬¬a→ a
is not an intuitionistic theorem. It follows again that (LP \M)∪(LL\LP ) =
LP∪L \M and, therefore, P ∪¬(LP \M)∪¬(LL \LP )∪¬¬M I M . Using
Lemma 3 again we can remove the set of premises ¬(LL \ LP ) and obtain
the definition of M ∈ AS(P ).

Lemma 4. Given two disjoint sets of atoms M1, M2 and a formula F with
LF ⊆M1 ∪M2, then we have either M1 ∪ ¬M2 `I F or M1 ∪ ¬M2 `I ¬F .

Sketch of the Proof. A proof can be done by inductively constructing the
proof of F . The fact that the premises M1 ∪¬M2 can prove either F or ¬F
is determined on on the truth value that has the formula F in classical logic
when we take the interpretation that makes all atoms in M1 true and those
in M2 false. The technique required to construct the proof of the formula F
in terms of its classical interpretations can be found at (Mendelson 1987).
A similar procedure should work here for the intuitionistic logic.
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Lemma 5. Given two disjoint sets of atoms M1, M2 and a formula F with
LF ⊆M1∪M2, we have either ¬¬M1∪¬M2 `I ¬¬F or ¬¬M1∪¬M2 `I ¬F .

Proof. From Lemma 4 we know that M1 ∪ ¬M2 `I G, where G is either
F or ¬F . Then, for some finite set of atoms {a1, . . . , an} ⊆ M1 we have
that ¬M2 `I (a1 ∧ · · · ∧ an)→ G. It follows, using the pair of intuitionistic
theorems `I A→ ¬¬A and `I ¬¬(A→ B)→ (¬¬A→ ¬¬B), we can then
prefix a double negation to G and propagate double negations to obtain
¬M2 `I (¬¬a1 ∧ · · · ∧ ¬¬an) → ¬¬G. Again, this is equivalent to the
intuitionistic statement ¬¬M1 ∪ ¬M2 `I ¬¬G.

Proposition 10. Let P ∈ Prp. Given a formula F such that LF ⊆ LP and
an atom x /∈ LP , P

AS−−→ P ∪ {x↔ F}.

Proof. Take M ∈ AS(P ∪ {x↔ F}), from the definition of answer sets,
we have P ∪ {x↔ F} ∪ ¬(LP \ M ′) ∪ ¬¬M ′ ∪ ∆ I M ′, where the set
M ′ = M ∩ LP = M \ {x} and ∆ = {¬¬x} if x ∈ M or ∆ = {¬x} if
x /∈ M . Also observe, since LF ⊆ LP and by Lemma 5, that we have
¬(LP \ M ′) ∪ ¬¬M ′ `I ¬¬F (or ¬F ) where, because of consistency, the
number of negations should match the number of negations of x in ∆. It
follows that {x↔ F}∪¬(LP \M ′)∪¬¬M ′ `I ∆ and thus we may remove the
set ∆ from the premises to obtain P ∪{x↔ F}∪¬(LP \M ′)∪¬¬M ′ I M ′.
In this statement the atom x now only appears in the premise x ↔ F and
therefore, replacing x with F , we obtain the theorem F ↔ F that we can
also drop from the premises to obtain the definition of M ′ ∈ AS(P ).

For the converse take M ∈ AS(P ) so that, by definition, we have that
P ∪¬(LP \M)∪¬¬M I M . From Lemma 4 we have ¬(LP \M)∪M `I G,
where G is either F or ¬F . Let M ′ = M ∪ {x} if G = F or M ′ = M if
G = ¬F . It also follows, from the original intuitionistic statement, that
P ∪ ¬(LP \M) ∪ ¬¬M I G and therefore, we are able to conclude that
P ∪{x↔ F}∪¬(LP \M ′)∪¬¬M ′ I M ′, the definition of M ′ ∈ AS(P ).
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