
Annals of Pure and Applied Logic 134 (2005) 63–82

www.elsevier.com/locate/apal

Safe beliefs for propositional theories

Mauricio Osorio∗, Juan Antonio Navarro Pérez, José Arrazola

Universidad de las Américas, CENTIA, Santa Catarina Mártir, Cholula, 72820 Puebla, Mexico

Received 17 December 2002; received in revised form 10 May 2004; accepted 23 June 2004
Available online 18 November 2004

Abstract

Wepropose an extension of answer sets, that we call safe beliefs, that can be used to study several
properties and notions of answer sets and logic programming from a more general point of view.
Our definition, based on intuitionistic logic and following ideas from D. Pearce [Stable inference
as intuitionistic validity, Logic Programming 38 (1999) 79–91], also provides a general approach to
define several semantics based on different logics or inference systems.

Weprove that, in particular, intuitionistic logiccan be replaced with any other proper intermediate
logic without modifying the resulting semantics.We also show that the answer set semantics
satisfies an important property, the “extension by definition”, that can be used to construct program
translations. As a result we are able to provide apolynomial translation from propositional theories
into the class of disjunctive programs.
© 2004 Elsevier B.V. All rights reserved.

1. Introduction

Safe beliefs is an extension of the answer set (“stable model”) semantics [6] that allows
the use of arbitrary propositional theories as logic programs. The official definition of
answer sets for augmented programs, due to Lifschitz et al. [10], is based in finding
minimal models of some reduced logic programs. Studies from several authors in the
context answer sets have provided interesting relations of this semantic operator with
monotonic propositional logics.

∗ Corresponding author.
E-mail address:josorio@mail.udlap.mx (M. Osorio).

0168-0072/$ - see front matter © 2004 Elsevier B.V. All rights reserved.
doi:10.1016/j.apal.2004.06.012

http://www.elsevier.com/locate/apal


64 M. Osorio et al. / Annals of Pure and Applied Logic 134 (2005) 63–82

Work that relates answer sets with classical logic can be found in [5,15]. Erdem and
Lifschitz relate answer sets and supported models in [4]. Work that relates answer sets
with epistemic and modal logic can be found in [9,11]. Our work follows an approach,
originally proposed by Pearce [22], that makes use ofintuitionistic logic. Further research
from Pearce [8,21] served to develop the equilibrium logic that can also be considered as
an extension of answer sets.

Safe beliefs are then defined as extensions of theories satisfying certain consistency and
completeness conditions. The use of intuitionistic logic as the underlying inference system
seems appropriate since, according to Brouwer, we can identify a formulaA with “I know
A”. Non-monotonic inference can be achieved determining some formulas that we can
“safely believe” in order to produce new knowledge. The actual definition of safe beliefs,
given later in this paper, formalizes the idea.

As a major advantage of this logic basedapproach we can study common notions and
properties of answer sets from a more general point of view. We do not need, for instance,
any particular assumptions about the form or syntax that logic programs should have. The
definition of answer sets is automatically extended to deal with arbitrary propositional
theories. Moreover, other propositional logics, even modal or temporal logics, can be used
as the underlying inference system to produce different semantic operators with additional
or extended features.

One of the main theorems of this paper shows that, in particular, any propositional
logic, strictly weaker than classical logic andstronger than intuitionistic logic, can be used
in the definition of safe beliefs without modifying the resulting semantic operator. Several
applications and theoretical consequences ofthis result are also discussed. This result can
be used to show that, in fact, our extension of answer sets is equivalent to the one provided
by Pearce’s equilibrium logic.

We also devote one section to the study of translations for logic programs under
this generalizedapproach. We explore the notion of conservative transformations and,
extending ideas from [8], we propose a definition of astrongconservative transformation.
We show for instance that adding new atoms “by definition” to logic programs is an
operation that preserves the semantics in a strong way. We also observe that this is an
important property of answer sets that should be considered when studying properties of
other semantics.

Another contribution of this paper is to present a translation, with this sort of strong
properties, that can be used to reduce any propositional theory into the class of augmented
programs. Other translations, like the ones presented in [23], can be used to provide a
polynomial reduction of arbitrary propositional theories into disjunctive logic programs.

The material included in this paper is an extension and revision of earlier work [13,14,
18] already presented in workshops and conferences.

Our paper is structured as follows: inSection 2we briefly present the language of
propositional logic and several classes of logic programs commonly found in literature.
We also reviewsome basic notions and definitions of intermediate logics and present some
simple results. InSection 3we introduce the semantics of answer sets and safe beliefs, we
also discuss the relations between the two approaches. InSection 4we present the first
of our main theorems, the invariance of safe beliefs with respect to the underlying logic.



M. Osorio et al. / Annals of Pure and Applied Logic 134 (2005) 63–82 65

In Section 5we explore the idea of strong conservative transformations and provide our
translation of arbitrary theories into augmented programs.

2. Background

We review in this section some basic concepts and definitions used throughout this
paper. First we introduce the language of propositional logic, and use it to define some
classes of programs commonly found in literature. Finally we make some comments on
intermediate logics that will be used in later sections to provide a logical framework for
logic programming and non-monotonic reasoning.

2.1. Propositional logic

We use the complete set of propositional formulas in order to describe rules and
information within logic programs. Formally we consider a language built from an alphabet
containing: a denumerable setL of elements calledatomsor atomic formulas; the2-place
connectives∧, ∨,→; the0-place connective⊥; and auxiliary symbols(, ). Formulas are
constructed as usual in logic. The formula� is introduced as an abbreviation of⊥ → ⊥,
¬A as an abbreviation ofA→⊥, andA↔ B as an abbreviation of(A→ B)∧(B→ A).
The notationA← B is just another way of writing the formulaB→ A.

A theory is a set of formulas, we restrict our attention to finite theories. For a given
theoryT its signature, denotedLT , is the set of atoms that occur in the theoryT . Observe
that, since we consider finite theories, their signatures are also finite. Aliteral is either an
atoma (a positive literal) or a negated atom¬a (a negative literal). Given a theoryT we
also define the negated theory¬T = {¬A | A ∈ T}.
2.2. Logic programs

In our context alogic program is just a propositional theory, and aclass of logic
programsis a set of logic programs. We can think, in fact, of the wordstheoryandprogram
as synonyms; we use the former when stating general results in mathematical logic, and
the latter when dealing with logic programs having a particular syntax and/or semantics.

We use the symbolPrp to denote the class containing all propositional logic programs.
A positive theory(or program) is one that does not contain occurrences of the connective
⊥ (except for those in the formula abbreviated by�), we usePos to denote the set of all
positivetheories.

The syntax of formulas within logic programs is usually defined in terms of special
formulas know as clauses. Aclauseis, in general, a formulaH ← B with implication
as the principal connective. The formulasH and B are known as theheadandbodyof
the clause respectively. The special case of a clause with the form⊥ ← B is known as a
constraintand the head is said to be empty. Each formulaH , whose principal connective
is not implication, is know as afact and is associated with the clauseH ← � that has an
empty body.

We introduce now some of the classes of programs commonly found in literature.
An augmented clauseis a clause where bothH and B can be arbitrary logic formulas



66 M. Osorio et al. / Annals of Pure and Applied Logic 134 (2005) 63–82

built from the connectives∧, ∨ and¬ arbitrarily nested. Note, however, that embedded
implications are not allowed in augmented clauses. Anaugmented programis a logic
program that contains only augmented clauses, and the class of all augmented programs is
denotedAug.

A disjunctive clauseis built from a (non-empty) disjunction of atoms in the head and a
conjunction of literals in the body. A disjunctive clause has then the form

h1 ∨ · · · ∨ hn← b1 ∧ · · · ∧ bm ∧ bm+1 ∧ · · · ∧ bm+l

where eachhi andbj is an atom,n ≥ 1, m ≥ 0 andl ≥ 0. A disjunctive programis then
defined as a program containing only disjunctive formulas, and the class of all disjunctive
programs is denotedDis. Observe that, in particular, constraints are not allowed inside
disjunctive programs.

Example 1. The following are examples of the clauses just defined

a← (b→ c). propositional
¬(p∧ ¬q)← a ∨ (¬b∧ c). augmented
a ∨ b← c∧ d ∧ ¬e. disjunctive

Also observe that these classes of programs satisfyDis ⊂ Aug ⊂ Prp.

2.3. Basic notions on intermediate logics

This paper follows a line of research aimed to provide foundations of logic
programming in terms of mathematical logic. We found that intermediate logics are
particularly useful for this approach. Intuitionistic and multivalued logics are briefly
described in the following paragraphs. A more complete background on these logics can
be found in [26]. Some notation, definitions and simple results are given at the end of this
section.

2.3.1. Intermediate logics
Some logics can be defined in terms of truth values and evaluation functions. Gödel

defined the multivalued logics Gi , with i truth values, where amodel of a formula is a
truth assignment to the atoms that, when propagated over its connectives, evaluates to
some designatedtrue value. A formula is a tautologyif it is true for every possible truth
assignment. Observe that G2 corresponds exactly to the definition of classical logic C.

Another important logic, which has beena great area of interest in recent years, is
intuitionistic logic. This logic is based on the concept ofproof, rather than truth as in
classical logic. Intuitionistic logic, denoted I, can be defined in terms of Hilbert type proof
systems of axioms and inference rules where the provable formulas are known astheorems.
Equivalent definitions can be given in terms of natural deduction systems and Kripke
models, see [24,25]. Surprisingly no definition using a truth table scheme is possible [12].

Gödel observed that there are infinitely many logics whose set of provable formulas
lies between intuitionistic and classical logic [26]. We have, in particular, the following
proposition, where⊂ denotes proper contention of the set of provable formulas (theorems
or tautologies) on each logic.



M. Osorio et al. / Annals of Pure and Applied Logic 134 (2005) 63–82 67

Proposition 2 ([26] ). I ⊂ · · · ⊂ Gi+1 ⊂ Gi ⊂ · · · ⊂ G3 ⊂ G2 = C.

Any logic1 whose set of provable formulas lies between intuitionistic and classical
logic (inclusive), are known asintermediate logics. A proper intermediate logicis an
intermediate logic that is not the classical one.Proposition 2shows that the multivalued
logics Gi are all intermediate logics.

The logic G3, in particular, corresponds to the strongest proper intermediate logic [26].
Alternate definitions for the logic G3 are also available. TheHere and There, HT, logic
defined using Kripke models with two worlds is equivalent to the logic G3. Following an
axiomatic approach the logic Sm, which is obtained adding the new axiom scheme

(¬q→ p)→ (((p→ q)→ p)→ p)

to the set of intuitionistic axioms, is equivalent to the logic G3.
Proposition 2also seems to imply that intuitionistic logic is less powerful than classical

logic since, in fact, it proves “less” formulas. Gödel showed, however, that the provable
formulas of classical logic are actually embedded inside intuitionistic logic. A slightly
more general version of thisresult is presented later inProposition 3.

Intuitionistic logic, as well as the proper intermediate logics, are able to distinguish
betweena and¬¬a. This property, as we will see later, makes these logics suitable to
characterize notions of logic programming.

2.3.2. General definitions
We use the standard notation�X F to denote thatF is a provable formula (atautology

or a theorem) of logic X. IfT is a theory we understand the symbolT �X F to mean
that�X (F1 ∧ · · · ∧ Fn) → F for some formulaFi contained inT . This is not the usual
definition given in literature, but can be shown to be equivalent because of results like the
Deduction Theorem. Also, for a given theoryT , the setCnX(T) = {F | T �X F} is known
as the set of X-consequences ofT .

Using this notation the result about classicallogic embedded inside intuitionistic logic
can be presented as follows.

Proposition 3 ([19] ). Let T be a theory and let F be a formula. T�C F if and only if
T �I ¬¬F.

Similarly, if U is a theory, we use the symbolT �X U to denoteT �X F for every
F ∈ U . Then wecan say that two theoriesT1 andT2 are equivalent, with respect to logic
X anddenotedT1 ≡X T2, if it is the case that bothT1 �X T2 andT2 �X T1. Observe that
T1 ≡X T2 if andonly if CnX(T1) = CnX(T2).

A theory T is said to be X-consistent if it is not the case thatT �X ⊥. It is easy to show,
see for instance [25], that the definition does not depend on the particular logic chosen, so
we can drop the prefix “X-” from the notation.

1 A logic in the propositional case can be defined as a set of propositional formulas closed under logical
consequence (i.e.modus ponensandsubstitution).



68 M. Osorio et al. / Annals of Pure and Applied Logic 134 (2005) 63–82

Lemma 4 ([25] ). Let X andY be two intermediate logics, and let T be a theory. Then T
is X-consistent if and only if it isY-consistent.

For a theoryT and a formulaF we say thatF is X-determinedby T if it is the case that
eitherT �X F or T �X ¬F . A theoryis said to be X-completeif every formulaF , with
LF ⊆ LT is X-determined by the theory. Similarly, a theory isliteral X-completeif every
atom inLT is X-determined. It is clear that completeness implies literal completeness. The
converse is also true.

Lemma 5. LetX beanintermediate logic and let T be a theory. If T is literalX-complete
then T is alsoX-complete.

Proof. Observe, sinceT is literal X-complete we can define a unique classical two valued
interpretationI suchthat I (a) = 1 if T �X a and I (a) = 0 otherwise. Then for any
formula F it is easy to verify, using structural induction over the connectives ofF , that
T �X F if I is a model of F andT �X ¬F otherwise. �

We end this section with a simple lemma that formally presents an important property
of intermediate logics that we will freely use in the following sections. A proof in the
context of intuitionistic logic is given in [25], but this same proof holds under any other
intermediate logic.

Lemma 6. Let P be a theory and let A, B be a pair of formulas. If P′ is a theory
obtained from P by replacing some occurrences of A with B, and T is a theory such
that T �X A↔ B, for an intermediate logicX, then T∪ P ≡X T ∪ P′.

3. Semantics for logic programs

We use semantics to assign a meaning to a given logic program. Given a class of logic
programsC, a semanticoperatorSem is a function that assigns to each programP ∈ C
some sets of atomsM ⊆ LP. Thesesets of atoms are usually some “preferred” models of
the logic programP.

A popular semantic operator for logic programs is the answer set semantics. Some of
the main features of answer sets are its non-monotonicity and the integration of negation as
failure.2 These sorts of features are extremely useful to deal with concepts such as default
knowledge and modeling inertial rules. The answer set semantics constitutes the formal
basement of the A-Prolog programming paradigm and proved to be particularly useful for
several real life and research applications.

The actual definition of answer sets is, however, not required for the purposes of this
paper, the reader is referred to [10] for moredetails. It is just important to mention that,
from the original formal definition, the relation of the semantics with a particular logic is
not entirely clear and seems to be hidden under an ad hoc setting of reductions and minimal
models.

2 The negation symbol we use (¬) will play the role of the negation as failure in logic programs. The authors
in [10] use, however, the symbol∼ instead.



M. Osorio et al. / Annals of Pure and Applied Logic 134 (2005) 63–82 69

3.1. A logical approach

Consider thecase of a logic agent. The task of such an agent is, when provided with
some initial knowledge describing its world or application domain, to do inference and
produce new knowledge. We would like our agent, for instance, to be able to answer queries
and solve problems in its application domain.

We can use a propositional theoryT to represent the initial knowledge of our agent.
Under the premise thatT is consistent, it makes sense to say that the agentknows Fif the
formulaF is an intuitionistic consequence of the theoryT . Theuse of intuitionistic logic,
a logic of knowledge, as the underlying inference system seems a natural choice for this
approach.

But we also want our agent to do non-monotonic inference. Informally speaking we
will allow our agent toguessor supposethings in order to make more inference. We
must be cautious, however, since we don’t want our agent to precipitate conclusions or
make unnecessary assumptions. The agent should onlysupposefacts if they are helpful to
provide new knowledge. The following definition formalizes this idea.

Definition 7. Let T be a theory and letE be a theory withLE ⊆ LT . We say that the
theoryE is an I-explanationof T if the theoryT ∪¬¬E is both consistent and I-complete.

A very natural reading of this definition, in the context of our logic agent, would be
that:“A theory E is an explanation of theagent’s world if(i) it is consistent with its initial
knowledge and(ii) supposing that E is true is enough to answer any possible question in
its domain”. This supposingcorresponds to the double negation in the intuitionistic proof
system used as the underlying inference system.

The agent is allowed now tobelieve things in order to obtain a complete explanation
of its world. If E is an I-explanation ofT , it makes sense to say that the agentbelieves F
(assumingE) if the formulaF is an intuitionistic consequence ofE. Therecan also be, of
course, several explanations for a given initial knowledge. Brave and cautious beliefs can
be defined in the natural way. The agentbravely believesa formulaif there is an explanation
that makes the formula true, andcautiously believesa formula if that formula is true under
all possible explanations of its initial knowledge.

The explanations for a given theory naturally define semantics for logic programs, we
call this the (intuitionistic)safe belief semantics.

Definition 8. Let T be a theory. IfE is an I-explanation ofT then the set of atoms
CnI(T ∪ ¬¬E) ∩ LT is an I-safe belief of T .

Observe that this definition does not impose any particular restriction in the form or
syntax that the logic programs should have. Inour particular case this definition allows
the use of embedded implications inside formulas, a feature that is not very common in
current logic programming paradigms. The use of the full set of propositional formulas
can be useful to describe problems in a more convenient and natural way.

Another important property of safe beliefs is that its definition naturally follows from
provability relations in a well known mathematical logic, namely intuitionistic logic,
providing solid foundations for our approach. The relation with logic is more clear and
direct than, for instance, in the original definition of answer sets.



70 M. Osorio et al. / Annals of Pure and Applied Logic 134 (2005) 63–82

3.2. Logical foundations for A-Prolog

Despite the apparent lack of a logical intuition in the definition of answer sets, it is
possible to show that they actually coincide with safe beliefs (in the class of augmented
programs). This is not only a significant property of safe beliefs, but also serves to provide
solid logical foundations for the A-Prolog programming paradigm and allows natural
generalizations.

The use of a logic based approach to study answer sets has been proved to be quite useful
in several circumstances. Thestudy of notions such as strong equivalence between logic
programs is closely related with equivalence in intermediate logics [8,13]. Other interesting
applications, such as the definition of a debugging scheme for logic programming, is also
possible by taking advantage of the 3-valued nature of the logic G3 [1,17].

Definition 8 follows from a line of research, initiated by Pearce [22], that offered a
characterization of answer sets in terms of intuitionistic logic. Pearce proposed an approach
based on completions of theories, very similar to our explanations but based on the logic
HT,3 and showed that they are equivalent to theequilibrium logic also developed by
himself [21,22]. The equilibrium modelsof this logic, which are defined for arbitrary
propositional theories, are some distinguished HT models satisfying certain minimality
conditions.4 We can rephrase this result as follows:

Proposition 9 ([22] ). Let T beany theory. A theory E is anHT-explanation of the theory
T if and only if the set of atoms CnHT(T ∪ ¬¬E) ∩ LT is an equilibrium model of E.

Pearce also investigated intuitionistic explanations, but restricted to explanations
composed exclusively by negated atoms, and he used them to characterize answer sets
of disjunctive logic programs [22]. His characterization, however, was not intended to
characterize answer sets for other classes of programs. In fact the characterization does
not capture correctly the answer sets of programs containing negation in the head [19]. In
a more recent paper [8], together with Lifschitz and Valverde, Pearce was able to show that
equilibrium models actually characterize answer sets for augmented programs, the most
general class of programs where a definition for answer sets is available.

Proposition 10 ([8] ). For any augmented program P and any set M of atoms, the set M
is an equilibrium model of P iff M is an answer set of P.

Recall that the definition of safe beliefs is based on the inference system provided
by intuitionistic logic, but analogous definitions can be naturally defined for any other
propositional logic.Proposition 9deals, for instance, with the case of HT-explanations.
An interesting question left open is whether different logics produce different semantics
for logic programs, or if all of them collapse to the same non-monotonic inference system.

If we use classical logic the answer is immediate and quite simple, classical safe beliefs
correspond just to regular monotonic classical models. But the situation is not that clear

3 They are introduced in a somewhat different manner, but a close inspection shows that the difference is just a
matter of notation.

4 The formal definition ofequilibrium modelsis not required for the purposes of this paper. We mention them
just to state the relations between different approaches to the study of answer sets.



M. Osorio et al. / Annals of Pure and Applied Logic 134 (2005) 63–82 71

for the rest of the proper intermediate logics. One of the main contributions of this paper
is to finally answer this question. InSection 4we prove that all proper intermediate logics
capture exactly the same models as safe beliefs.

The characterization of answer sets in terms of I-explanations, which was originally
presented in [19], is now rediscovered as a simple consequence of this result. Therefore, at
the end ofSection 4, wecan prove that the semantics of answer sets are equivalent to I-safe
beliefs for augmented programs, providing logical foundations for the A-Prolog paradigm.

4. Safe beliefs for intermediate logics

This section is concentrated in the proof of one of the main results of this paper, namely
the invariance of safe beliefs with respect to different proper intermediate logics. In order
to do so we present first some preliminary lemmas that are used in the main proof. We
define then some reductions of theories that, as a theoretical application, are quite useful to
complete our proof. At the end of this section we present the formal proof of our statement.

4.1. Preliminaries

The following is a particular case of a proposition in [16]. The original proposition
presents a class of formulas that are irrelevant in the proof of a positive formula from
positive premises. We usethis result to remove premises of the form¬¬M, for a setM
of atoms, when we are dealing with proofs of positive formulas. Recall the definition of
positive theoriesfrom Section 2.2.

Lemma 11 ([16] ). Let T be a positive theory, let M be a set of atoms and let F be a
positive formula. If T∪ ¬¬M �I F then T�I F.

The next lemma shows a particular case where provability relations of classical and
intuitionistic logics coincide. Namely, if a theory has the property that it can prove true –
using classical logic – all the atoms in its own signature, then the use of intuitionistic logic
will preserve this property of the theory.

Lemma 12. Let T be a positive theory. If T�C LT then T�I LT .

Proof. Let a be an atom inLT . Wecan replace every atom in the proof ofT �C a to obtain
a valid proof of Ta �C a where the theoryTa is obtained by replacing all atoms occurring
in T with the atoma. Obtain nowthe programT ′a applying the following replacements on
Ta until no more replaces can be done:

• � ∧ � with �. • a ∧ a, a∧ �,�∧ a with a.

• a ∨ a with a. • a ∨�,� ∨ a,�∨� with �.

• � → a with a. • a→ a, a→ �,�→ � with �.

It is clear thatTa ≡X T ′a for any intermediate logic X. Also observe that each formula in
Ta must be reduced either toa or�, i.e. T ′a ⊆ {�, a}. Since we must haveT ′a �C a then
it must be the case thata ∈ T ′a. It is now an immediate consequence thatT ′a �I a and,
restoring the equivalent theoryTa, Ta �I a.



72 M. Osorio et al. / Annals of Pure and Applied Logic 134 (2005) 63–82

Now let D = {x↔ y | x, y ∈ LT }, it follows thatTa∪D �I a and, sinceTa∪D ≡I T ,
we may conclude thatT �I a. �

The following lemma shows that we can eliminate premises whose language has no
relation with the formula that we want to prove.

Lemma 13. Let T and U be two theories, and let F be a formula such thatLT∪{F} ∩LU =
∅. If the theory U is consistent and T∪ U �X F, for some intermediate logicX, then
T �X F.

Proof. Since the theoryU is consistent it has, at least, one classical modelM. In theproof
of T ∪U �X F we can replace each atoma ∈ LU with � if a ∈ M and with⊥ if a /∈ M.
SinceT andF do not contain any of the atomsa ∈ LU , these formulas are not modified.
While all the formulas inU are replaced with theorems ortautologies from the underlying
logic. This leaves a proof forT �X F . �

4.2. Reduction of theories

In this section we present some reductions of theories and several of their properties in
terms of intermediate logics. The notion of reductions and/or transformations has several
applications in logic programming; see for instance [3,16,20]. Our set of reductions can be
used, in particular, as a theoretical tool in the proof ofTheorem 25.

The first of these reductions evaluates the effect of the connectives⊥ and�5 inside a
logic program. After applying this reduction all occurrences of⊥ will be removed, except
for those that appear in the formF → ⊥ as a negation or if the entire theory is reduced
to the single connective⊥. Besides, no occurrence of the connective� will remain in the
program.

Definition 14. Given a formulaF we define its reduction with respect to⊥, denoted
Reduce⊥(F), as the formula obtained applying the following replacements onF until no
more replaces can be done. IfA is any formula then replace

• A∧ � or� ∧ A with A. • A∧ ⊥ or⊥ ∧ A with ⊥.

• A∨ � or� ∨ A with �. • A∨ ⊥ or⊥ ∨ A with A.

• A→� or⊥→ A with �. • � → A with A.

Then, for a given theoryT , we defineReduce⊥(T) = {⊥} if there is any formulaF ∈ T
such that Reduce⊥(F) = ⊥ and, otherwise,

Reduce⊥(T) = {Reduce⊥(F) | F ∈ T and Reduce⊥(F) �= �}.
It follows immediately from the definition that the reduction with respect to⊥ of any

theory is equivalent, under any intermediate logic, to the original theory.

Proposition 15. For any theory T and any intermediate logicX, we have that T ≡X
Reduce⊥(T).

5 Formally � is not a connective but an abbreviation of the formula⊥ → ⊥. It is useful, in order to keep the
presentation simple, to assume that� is in fact a connective.



M. Osorio et al. / Annals of Pure and Applied Logic 134 (2005) 63–82 73

Proof. It suffices to observe that each one of the replacements preserve equivalence with
respect tointuitionistic logic. They are valid, in particular, in any intermediate logic.�

The next reduction works, given a setM of atoms, assuming that the atoms contained
in M are false (i.e. assuming¬M) and reducing a theory using this information. One
of the important properties of this reduction is that, after applying it, the reduced theory
will not contain any of the atoms inM. The reduction also preserves equivalence under
intermediate logics appending the set of premises¬M.

Definition 16. Let T be a theory and letM be a set of atoms. LetT ′ be the theory obtained
replacing each occurrence of atomsa ∈ M in T with the connective⊥. Then we define the
reduction Reduce1(T,¬M) = Reduce⊥(T ′).

Proposition 17. For any theory T , any intermediate logicX and any set M of atoms, we
have that T∪ ¬M ≡X Reduce1(T,¬M) ∪ ¬M.

Proof. It follows from Proposition 15and the fact that, for any atoma, we have that
¬a �X a↔ ⊥. �

Our last reduction is similar to theprevious one. Given a setM of atoms it evaluates
the effect on a theory of adding the premises¬¬M. Since weare interested in preserving
equivalence with respect to intermediate logics, the reduction can only take effect inside
negated subformulas. Only atoms occurring in formulasF → ⊥ are replaced by the
reduction.

Definition 18. Let T be a theory and letM be a set of atoms. LetT ′ be the theory
obtained by replacing all occurrences of atomsa ∈ M in T with the connective⊥ if the
occurrence of the atom appears within a formulaF → ⊥. Then we define the reduction
Reduce2(T,¬¬M) = Reduce⊥(T ′).

Proposition 19. For any theory T , any intermediate logicX and any set M of atoms, we
have that T∪ ¬¬M ≡X Reduce2(T,¬¬M) ∪ ¬¬M.

Proof. It also follows fromProposition 15and the fact that for any formulaF , and if we
replace the occurrences of an atoma for� to obtainF ′, then we have that¬¬a �X ¬F ↔
¬F ′. �

Example 20. This example illustrates the use of these reductions. Consider the following
theoryT :

(a∧ b) ∨ ¬(c∧ d).

b∧ d→ b.

(c→ (a→ b)) ∨ e.

In order to compute Reduce1(T, {¬b}) we have to replace all occurrences of the atomb
with the connective⊥ and successively apply the Reduce⊥ replacements.

(a∧ ⊥) ∨ ¬(c∧ d).

⊥∧ d→ ⊥.

(c→ (a→⊥)) ∨ e.
=⇒

⊥∨ ¬(c∧ d).

⊥→ ⊥.

(c→ (a→⊥)) ∨ e.
=⇒

¬(c∨ d).

�.

(c→ (a→⊥)) ∨ e.



74 M. Osorio et al. / Annals of Pure and Applied Logic 134 (2005) 63–82

So that, after one more aplication of the reduction Reduce⊥, the theory T ′ =
Reduce1(T, {¬b}) obtained is:

¬(c∧ d).

(c→ (a→⊥)) ∨ e.

If we compute nowT ′′ = Reduce2(T ′, {¬¬a,¬¬c}) we start by replacing occurrences of
a andc, that appear under the scope of a negation, with the connective� and we apply
then Reduce⊥:

¬(�∨ d).

(c→ (�→ ⊥)) ∨ e.
=⇒ ¬d.

(c→⊥) ∨ e.

Observe now that, as a result of the application of Reduce2, a new negation has been
produced in the last formula. We can therefore apply the reduction again to obtain
T ′′′ = Reduce2(T ′′, {¬¬a,¬¬c}) = {¬d, e}.

As the previous example shows, in some cases the reduction Reduce2 can be applied
several times over a theory to produce further simplifications. We use the symbol
Reduce2∗(P,¬¬M) to denote the theory obtained after successive applications of
Reduce2 until no more reductions can be obtained. We can present now a reduction that
integrates all previous ones.

Definition 21. Let T be a theory and letM1, M2 be two disjoint sets of atoms. We define
Reduce(T,¬M1,¬¬M2) = Reduce2∗(Reduce1(T,¬M1),¬¬M2).

Proposition 22. For any theory T , any intermediate logicX and any pair of disjoint sets
M1, M2 of atoms, we have that

T ∪ ¬M1 ∪ ¬¬M2 ≡X Reduce(T,¬M1,¬¬M2) ∪ ¬M1 ∪ ¬¬M2 .

Proof. It follows from Propositions 17and19. �

Also observe that, according to the notation of the previous proposition, if the sets
satisfyM1∪M2 = LT then the theory Reduce(T,¬M1,¬¬M2) must be a positive theory.
This is because the reduction Reduce2 involved could be iteratively applied while negation
is still occurring in the reduced theory.

4.3. Invariance of safe beliefs

One of the major contributions of this paper is to prove that intuitionistic logic, used
to define the semantics of safe beliefs, can bereplaced with any other intermediate logic
without modifying the models that the semantics would capture as safe beliefs. The formal
statement is given inTheorem 25at the end of this section.

We need first the following simple lemma which is used to obtain, from every X-
safe belief of a given theory, a “canonical” X-explanation of the theory. This canonical
explanation has the property of being always X-complete and composed only by literals.
Thesecanonical explanationsare useful to take advantage of the reductions we presented
in the previous section.



M. Osorio et al. / Annals of Pure and Applied Logic 134 (2005) 63–82 75

Lemma 23. Let T be a theory and let M be, for some intermediate logicX, an X-safe
belief of T . The theory E= M ∪ ¬(LT \ M) is anX-explanation of T .

Proof. If M is an X-safe belief of the theoryT then, by definition, there must be a theory
E′ suchthat E′ is an X-explanation ofT andM = CnX(T ∪ ¬¬E′) ∩ LT .

First we will show thatE �X E′. Suppose that there is a formulaF ∈ E′ suchthat
E ��X F , sinceE is clearly X-complete thenE �X ¬F . Recall now that, by construction,
T ∪ ¬¬E′ �X E and, therefore,T ∪ ¬¬E′ �X ¬F . But this would imply that the theory
T ∪ ¬¬E′ is inconsistent and contradiction arises.

It is clear, sinceE is consistent, that alsoT ∪ ¬¬E is consistent. Finally, since
E �X E′, we have thatP ∪ ¬¬E �X P ∪ ¬¬E′. The two theories must have the same
X-consequences and, in particular,P ∪ ¬¬E is also X-complete. �

The following proposition solves one particular case of our main theorem, it shows that
G3-safe beliefs are also I-safe beliefs. As we can see in the proof ofTheorem 25this is the
most important case since all other equivalences will follow from this one.

Proposition 24. Let T be a theory, let M be a set of atoms with M⊆ LT and let
E = M ∪ ¬(LT \ M). If the theory E is aG3-explanation of T , then E is also an I -
explanation of T .

Proof. SinceE is clearly consistent, we only need to show thatT ∪¬¬E is, in particular,
literal I-complete. If we take an atoma /∈ M it is immediate, since we have¬a ∈ E, that
T ∪ ¬¬E �I ¬a (recall that�I ¬¬¬a → ¬a). We have only left to prove that, in fact,
T ∪ ¬¬E �I M.

By construction ofE we already know thatT ∪ ¬¬E �G3 M. Let T ′ be the theory
Reduce1(T,¬(LT \ M)) so that, from Proposition 17, it follows thatT ′ ∪ ¬¬E �G3 M.
Recall that the theoryT ′ satisfiesLT ′ ⊆ M and, therefore, we can applyLemma 13to
obtainT ′ ∪ ¬¬M �G3 M.

We can, equivalently, assume thatT ′ ∪ A∪ ¬¬M �I M whereA is a set of instances
of the axiom scheme

(¬G→ F)→ (((F → G)→ F)→ F) (1)

that characterizes logic Sm. Without loss of generality, we may also assume that the theory
A satisfiesLA ⊆ M.

Let T ′′ = Reduce2∗(T ′,¬¬M) and letA′ = Reduce2∗(A,¬¬M). By Proposition 19
we have thatT ′′ ∪ A′ ∪¬¬M �I M whereT ′′ andA′ are positive theories. We can now, by
Lemma 11, eliminate the set¬¬M from the premises to obtainT ′′ ∪A′ �I M. In particular
we also have thatT ′′ ∪ A′ �C M.

Now observe that, since Reduce2∗ completely evaluates the negation¬G in the axioms
of the form (1), the setA′ can only contain classical tautologies. We may then omit the
set A′ to finally obtainT ′′ �C M. Observenow that we must haveLT ′′ = M and, by
Lemma 12, T ′′ �I M. We can just restore¬¬E as a set of premises and replaceT ′′ with
the originalT to obtainT ∪ ¬¬E �I M. �



76 M. Osorio et al. / Annals of Pure and Applied Logic 134 (2005) 63–82

We are now ready to prove one of the major results of our paper. As we anticipated, it
shows that the definition of safe beliefs does not depend on the particular logic chosen as
theunderlying inference system.

Theorem 25. Let T be a theory and letX, Y be two proper intermediate logics. A set M
of atoms is anX-safe belief of T if and only if it is aY-safe belief of T .

Proof. If the setM is an X-safe belief ofT then, byLemma 23, the theoryE = M ∪
¬(LT \ M) is an X-explanation ofT . Recall that G3 is the strongest proper intermediate
logic, then it follows thatE is also a G3-explanation of the theoryT . Proposition 24implies
that E is an I-explanation ofT and, since I is the weakest intermediate logic,E is a Y-
explanation ofT . Finally observe that, in fact,M = CnY(T ∪ ¬¬E) ∩ LT and therefore
M is a Y-safe belief ofT . �

As an immediate consequence of the previous theorem we may drop the prefix “X-”
from the notation of safe beliefs. We also have the following corollary that states the
equivalence between the semantics of safe beliefs and answer sets.

Corollary 26. Let P be an augmented program. A set of atoms M is a safe belief of P if
and only if M is an answer set of P.

Proof. By the previous theorem, we may assume thatM is a G3-safe belief ofP. Now M
is a G3-safe belief if and only if, byProposition 9, M is an equilibrium model ofP if and
only if, by Proposition 10, M is an answer set ofP. �

5. Program translations

In this section we study several properties of translations for logic programs. It
comprises a revision and extension of the material in [14]. We present first the notion
of conservative transformations and, following ideas from [8], we also present thestrong
version of this notion. Using this concepts we are able then to show a polynomial time
translation from propositional theories into the class of disjunctive logic programs.

5.1. Conservative transformations

Suppose that we have a logic programP and we want to compute its safe beliefs. The
task could be simplified if we are able to construct another simpler logic programP′,
such that the safe beliefs ofP and P′ are somehow related. We could then compute the
safe beliefs of P′ and recover those of the originalP. It is important, of course, that the
“recovery” of the safe beliefs ofP, knowing those ofP′, can be done through a simple and
efficient method. A conservative transformation is a relation between logic programs that
can be used for this kind of application.

Definition 27. Let Sem be a semantic operator defined for a class of logic programsC and
let P, P′ ∈ C. We saythat P′ is aconservative transformationof the programP, denoted

P
Sem−−→ P′, if LP ⊆ LP′ and

Sem(P) = {
M ∩ LP | M ∈ Sem(P′)

}
.



M. Osorio et al. / Annals of Pure and Applied Logic 134 (2005) 63–82 77

A conservative extensionis a similar notion, introduced in [2], with the additional
condition P ⊆ P′ on the logic programs. Our definition is more general since it allows
the program to be modified or “transformed”, not only extended. The definition of a
conservative transformation was originally presented in [14].

A conservative transformation of a logic programP can, possibly, introduce new atoms
(those inLP′ \ LP) in order to achieve simplifications. But, if we ignore these newly
introduced atoms, weobtain exactly the answer sets ofP. We refer to these new atoms in
LP′ \ LP as thereservedatoms of the transformation. It is easy to verify that conservative
transformations define a transitive relation.

One particular case of a conservative extension, in the context of safe beliefs, is useful
to define new atoms as abbreviations of formulas in the current program domain. The
extension of programs by adding definitions is an important, and certainly desirable, feature
of the semantic of safe beliefs. We use SB to denote the safe belief semantics.

Theorem 28. Let P be a propositional logic program, let F be a formula such that

LF ⊆ LP and let x be an atom not inLP. P
SB−−→ P ∪ {x↔ F}.

Proof. Let M be a safe belief ofP∪{x ↔ F} and letM ′ = M ∩ LP = M\{x}. Following
Lemma 23, we obtain thatP ∪ {x ↔ F} ∪ ¬¬E ∪ ¬¬X is a consistent and I-complete
theory, whereE = M ′ ∪ ¬(LP \ M ′) and the setX is either{x} (if x ∈ M) or {¬x}
(otherwise). Observe that the theoryE is complete so thatE �I F (or¬F) where, because
of consistency, the number of negations should match the number of negations of the atom
x in X. It follows that{x↔ F} ∪ ¬¬E �I ¬¬X and thus we may remove¬¬X from the
list of premises to obtain the consistent and I-complete theoryP∪{x↔ F} ∪ ¬¬E. In this
statement the atomx now only appears in the premisex ↔ F and therefore, by replacing
x with F , weobtain the theoremF ↔ F that we can also drop to finally obtainP ∪ ¬¬E
as a consistent and I-complete theory. It follows thatE andM ′ correspond, respectively, to
an I-explanation and a safe belief ofP.

For the converse take a safe beliefM of the logic programP and let E be any
I-explanation of the programP such that M = CnI(P ∪ ¬¬E) ∩ LP. Since the
theory P ∪ ¬¬E is I-complete it decides, in particular,F . It follows that the theory
P ∪ {x↔ F} ∪ ¬¬E decides the new atomx and, therefore, it constitutes also an I-
complete theory. Then we are able to conclude that the corresponding setM ′ = CnI(P ∪
{x ↔ F} ∪ ¬¬E) ∩ LP∪{x↔F} is a safe belief ofP. �

Conservative transformations may seem very effective in the context of logic
programming. However, they dot not satisfy an important property for concrete
programming applications. We would expect that making a conservative transformation
of one piece of a program would also result, “globally”, in a conservative transformation
for the whole program.

This is not true for simple conservative transformations as just defined. Consider the
two programsP1 = {a← ¬b} and P2 = {a, b← b}. According toDefinition 27, P2
is a conservative transformation ofP1 in the safe belief semantics since they both have
{a} as their unique safe belief. However, replacingP1 with P2 in the larger program
P = {a← ¬b, b}, to obtain the programP′ = {a, b← b, b}, will break this relation.
Now P has one safe belief{b}, while the programP′ has only the safe belief{a, b}.



78 M. Osorio et al. / Annals of Pure and Applied Logic 134 (2005) 63–82

In order to ensure that making local transformations of code inside logic programs
will preserve global equivalence, we introduce the notion of a strong conservative
transformation.

Definition 29. Let Sem be a semantic operator for a class of programsC. Given two
logic programsP and P′ ∈ C, such that LP ⊆ LP′ , we saythat P′ is a strong

conservative translationof P, denotedP
Sem∗−−−→ P′, if for every logic programQ, such

thatLQ ∩ (LP′ \ LP) = ∅, P ∪ Q
Sem−−→ P′ ∪ Q.

The conditionLQ ∩ (LP′ \LP) = ∅ states that the programsQ, used to extendP, should
not contain any of the reserved atoms of the transformation. In an actual implementation
we could ensure this condition by defining a special set of atoms reserved for internal
transformations and not available to the user for writing programs. As we may expect,
strong conservative translations also define a transitive relation.

The particular case where there are no reserved atoms, i.e.LP = LP′ , is known as
strong equivalence between programs. This notion was originally introduced in [8] where
the authors provide a characterization of strong equivalence for augmented programs,
under the answer set semantics, using the HT logic. Their proof, however, is based on
the equilibrium logic and thus can be immediately extended, followingProposition 9and
Theorem 25, to safe beliefs for arbitrary propositional theories.

A study of relations between answer sets and the logic G3 is also presented in [13] where
an alternative proof for the characterization of strong equivalence, that does not require the
use of equilibrium models, is given.

Theorem 30 ([8,13] ). Let P and P′ be two propositional logic programs such that

LP = LP′ . P
SB∗−−→ P′ if and only if P≡G3 P′.

An important feature of this result is that the corresponding proof also provides, if two
programsP andP′ are not strongly equivalent, a method to construct a certificate program
Q, i.e. a program such thatP ∪ Q andP′ ∪ Q have different safe beliefs.

Example 31. Let P = {a← ¬b} and letP′ = {a, b← b}. Both programs are equivalent,
in a weak sense, since theyboth have only one safe belief{a}. The proof method of
Theorem 30, see for instance [13], can be used to construct the programQ = {¬a, b}
suchthat P ∪ Q has one answer set, namely{b}, while the programP′ ∪ Q is inconsistent
and has no answer sets. Then we are able to conclude that the programsP andP′ are not
strongly equivalent.

5.2. Polynomial reduction of theories

A translation is a function Tr: C → C′, whereC and C′ are two classes of logic
programs. Janhunen [7] discusses important properties of program translations, relevant to
logic programming, for arbitrary semantic operators. Particular applications for the answer
set semantics are also given in [23].



M. Osorio et al. / Annals of Pure and Applied Logic 134 (2005) 63–82 79

Definition 32 ([7,23] ). Let Sem be a semantic operator for a class of logic programsD,
a translation Tr: C → C′, where the classesC, C′ ⊆ D are closed under unions,6 is said
to be:

polynomial if the time required to compute Tr(P) is polynomial with respect to the
number of atomic formulas inP.

faithful if, for all programsP ∈ C, P
Sem−−→ Tr(P).

strongly faithful if, for all programsP ∈ C, P
Sem∗−−−→ Tr(P).

modular if, for all programsP1, P2 ∈ C, Tr(P1 ∪ P2) = Tr(P1) ∪ Tr(P2).
reductive if C′ ⊆ C and Tr(P′) = P′ for all programsP′ ∈ C′.7

The property of a translation being polynomial (P) is related with the complexity
that an actual computer implementation of the translation should have. A faithful (F)
translation can be applied to a program preserving the semantics, while a strongly faithful
(S) translation can also be appliedlocally to some section of the program without altering
the semantics.

The last two properties deal with the form of the translation, not with its particular
semantics. If a translation is modular (M) we could split a program into several pieces and
then perform the translationpiece by piece. A reductive (R) translation maps one class of
programs into some given subclass and the programs that already are in the “simplified”
subclass are not modified by the translation.

As a form of notation we say that a translation is PFM if it is simultaneously polynomial,
faithful and modular. Analogously, a PSMR translation is polynomial, strongly faithful,
modular and reductive. We can drop any of the letters from the notation if we are just
interested in some properties.

Proposition 33 ([23] ). There is a PSM translation, for the the semantics of safe beliefs,
AugDis: Aug→ Dis.

Using the machinery of logic, based onDefinition 8 and results likeTheorem 30, it is
also possible to provide a translation of logic programs, containing arbitrary propositional
formulas, into augmented programs.

Definition 34. If a formula F contains a proper subformulaA → B, whereneither A
nor B contain more implications, we say thatA → B is asimple embedded implication
of the formulaF . We define recursively the translation PrpAug: Prp → Aug for every
propositional programP, as follows:

• if P contains no clause with embedded implications thenP is already an augmented
program and PrpAug(P) = P.
• if P contains some clauseF with embedded implications take a simple embedded

implication,A→ B, from the formulaF . Take a new atomx ∈ L\LP not already inP,

6 A class ofprogramsC is closed under unionsif P1, P2 ∈ C implies thatP1 ∪ P2 ∈ C.
7 The definition of amodulartranslation we introduce here corresponds to the one given in [23]. Janhunen [7]

presents a different definition which corresponds tomodular+ reductive(whenC′ ⊆ C is satisfied).



80 M. Osorio et al. / Annals of Pure and Applied Logic 134 (2005) 63–82

let F ′ be the formula obtained by replacing the occurrence ofA → B in F with the
new atomx, and letP′ be the program obtained by replacingF with F ′ in P. Also let

∆ = {x ∧ A→ B, ¬A∨ B→ x, x ∨ A∨ ¬B} .
We finally define PrpAug(P) = PrpAug(P′ ∪∆).

The recursive definition of PrpAug is well-founded since, on each recursion step, the
programP′ ∪∆ has one implication less thanP.

Proposition 35. The translationPrpAug: Prp→ Aug is PSMR.

Proof. The number of recursion steps required to complete the translation is exactly the
number of embedded implications in the program, therefore the translation is polynomial.
It is also clear, since PrpAug acts on one clause at a time and does not modify programs
already in the augmented class, that the translation is modular and reductive.

To justify that the recursion step is a strongconservative transformation observe

that, from Theorem 28, P
SB−−→ P ∪ {x ↔ (A→ B)}. The key point is that

{x ↔ (A→ B)} ≡G3 ∆ and, therefore, we also have the equivalenceP ∪
{x ↔ (A→ B)} ≡G3 P′ ∪ ∆. Using Theorem 30, and transitivity, we end up with

P
SB−−→ P′ ∪∆. �

Current implementations of the answer set programming paradigm restrict the syntax of
formulas to the class of disjunctive programs where, in particular, implication in the body
is not allowed. A common work around this limitation was to use the intuitive (classical)
equivalence(A→ B) ↔ (¬A ∨ B). This practice, however, sometimes has the effect of
generating unexpected models (or the miss of expected ones) when computing answer sets.

The first rulex ∧ A → B in our equivalence is used to model the behavior of the
implication symbol in the head. The second rule¬A ∨ B → x comes from the classical
intuitivemeaning of the implication connective. These two rules, however, are not enough
to provide the required equivalence in the logic G3. The lessintuitive third rulex∨ A∨¬B
— required for the equivalence to hold — was discovered, in fact, by an examination of
the G3 models of the original formulax ↔ (A → B). This points out the importance
of results like Theorem 30that allows us to better understand the notion of answer sets,
proposing the logic G3 as a more correct guide for our intuition.

The results presented in this section allow us to reduce arbitrary propositional theories to
the simple class of disjunctive logic programs. Thus providing a first approach to compute
safe beliefs of a logic program.

Theorem 36. There is a PSM translationPrpDis: Prp→ Dis.

Proof. It follows immediately afterPropositions 33and35. �

6. Conclusions

We provide ageneral approach, that we call safe beliefs, that can be used to study several
properties and concepts of the answer set semantics. This approach is based on extensions



M. Osorio et al. / Annals of Pure and Applied Logic 134 (2005) 63–82 81

of theories obtained by adding double negated formulas to logic programs in order to obtain
consistent and complete explanations. An important virtue of this formulation is that it
can be easily extended for other logics to produce different (sometimes non-monotonic)
inference systems.

One of the main contributions of this paper is to show that, in particular, any proper
intermediate logic can be used instead of intuitionistic logic to define safe beliefs and
obtain the same semantic operator that extends answer sets for propositional theories. As
an important consequence we obtain that the alternate extension of answer sets provided
by the equilibrium logic is equivalent to our safe beliefs semantics. We were able then to
obtain a lot of feedback between the two different approaches.

We alsostudy properties of translations for logic programs in the context of answer
set programming. As another contribution we show that logic programs can be extended,
introducing new atoms by definition, without modifying the semantical properties of the
program. This seems a desirable property that should be taken into account when studying
other semantics.

Finally we provide a translation that canbe used to reduce arbitrary propositional
formulas to the class of augmented logic programs. Other reductions can be used to
complete the reductions and reach the class ofdisjunctive logic programs. These sorts
of translations are important, since they offer a natural approach to solve the problem of
computing safe beliefs for arbitrary propositional theories. Reductions, like those presented
in Section 4.2, can also be useful to build efficient algorithms to compute answer sets.

An interesting topic for further researchis to study possible generalizations and
extensions of the safe beliefs idea to incorporatelinear or modal logics. This could provide
a logic programming paradigm for environments with limited resources, or where several
agents can solve problems reasoning aboutthe knowledge and beliefs of each other.

Acknowledgement

Numerous discussions with David Pearce helped us to identify the relations between
the safe beliefs approach and the equilibrium logic.

References

[1] J.C. Acosta Guadarrama, J. Arrazola, M. Osorio,Making belief revision with LUPS, in: J.H.S. Azuela,
G.A. Figueroa (Eds.), XI International Conference on Computing, México, D.F., November 2002, CIC-IPN,
2002.

[2] C. Baral, Knowledge Representation, Reasoningand Declarative Problem Solving with Answer Sets,
Cambridge University Press, Cambridge, 2003.

[3] J. Dix, M. Osorio, C. Zepeda, A general theory of confluent rewriting systems for logic programming and
its applications, Annals of Pure and Applied Logic 108 (1–3) (2001) 153–188.

[4] E. Erdem, V. Lifschitz, Fages’ theorem for programs with nested expressions, in: Proceedings of the
17th International Conference on Logic Programming, December 2001, Paphos, Cyprus, Springer, 2001,
pp. 242–254.

[5] K. Eshgi, R. Kowalski, Abduction compared with negation by failure, in: G. Levi, M. Martelli (Eds.), Logic
Programming, Proceedings of the Sixth International Conference, June 1989, Lisbon, Portugal, MIT Press,
1989, pp. 234–255.



82 M. Osorio et al. / Annals of Pure and Applied Logic 134 (2005) 63–82

[6] M. Gelfond, V. Lifschitz, The stable model semantics for logic programming, in: R. Kowalski, K. Bowen
(Eds.), 5th Conference on Logic Programming, MIT Press, 1988, pp. 1070–1080.

[7] T. Janhunen, On the effect of default negation on theexpressiveness of disjunctive rules, in: T. Eiter,
W. Faber, M. Truszczynski (Eds.), Logic Programming and Nonmonotonic Reasoning, 6th International
Conference, September 2001, Vienna, Austria, Lecture Notes in Computer Science, vol. 2173, Springer,
2001, pp. 93–106.

[8] V. Lifschitz, D. Pearce, A. Valverde, Strongly equivalent logic programs, ACM Transactions on
Computational Logic 2 (2001) 526–541.

[9] V. Lifschitz, G. Schwarz, Extended logic programs as autoepistemic theories, in: L.M. Pereira, A. Nerode
(Eds.), 2nd International Workshop on Logic Programming & Non-Monotonic Reasoning, Cambridge, MA,
MIT Press, 1993, pp. 101–114.

[10] V. Lifschitz, L.R. Tang, H. Turner, Nested expressions in logic programs, Annals of Mathematics and
Artificial Intelligence 25 (1999) 369–389.

[11] V.W. Marek, M. Truszczýnski, Reflexive autoepistemic logic andlogic programming, in: L.M. Pereira,
A. Nerode (Eds.), 2nd International Workshopon Logic Programming & Non-Monotonic Reasoning,
Cambridge, MA, MIT Press, 1993, pp. 115–131.

[12] E. Mendelson, Introduction to Mathematical Logic, third ed., Wadsworth, Belmont, CA, 1987.
[13] J.A. Navarro, Answer set programming through G3 logic, in: M. Nissim (Ed.), Seventh ESSLLI Student

Session, European Summer School in Logic, Language and Information, Trento, Italy, August, 2002.
[14] J.A. Navarro, Properties of translations for logic programs, in: Balder ten Cate (Ed.), Eight ESSLLI Student

Session, European Summer School in Logic, Languageand Information, Vienna, Austria, August, 2003.
[15] I. Niemelä, P. Simons, Efficient implementation of the well-founded and stable model semantics,

in: M. Maher (Ed.), Proceedings of the Joint International Conference and Symposium on Logic
Programming, September 1996, Bonn,Germany, The MIT Press, 1996, pp. 289–303.

[16] M. Osorio, J.A. Navarro, J. Arrazola, Equivalence in answer setprogramming, in: A. Pettorossi (Ed.), Logic
Based Program Synthesis and Transformation, 11th International Workshop, LOPSTR 2001, November,
Paphos, Cyprus, LNCS, vol. 2372, Springer, 2001, pp. 57–75.

[17] M. Osorio, J.A. Navarro, J. Arrazola, Debugging in A-Prolog: A logical approach (abstract), in: P.J. Stuckey
(Ed.), Logic Programming. 18th International Conference, ICLP 2002, August 2002, Copenhagen,
Denmark, LNCS, vol. 2401, Springer, 2002, pp. 482–483.

[18] M. Osorio, J.A. Navarro, J. Arrazola, A logical approach for A-Prolog, in: R. de Queiroz, L.C. Pereira,
E.H. Haeusler (Eds.), 9th Workshop on Logic, Language, Information and Computation, WoLLIC, Rio de
Janeiro, Brazil, Electronic Notes in Theoretical ComputerScience, vol. 67, Elsevier Science Publishers,
2002, pp. 265–275.

[19] M. Osorio, J.A. Navarro, J. Arrazola, Applicationsof intuitionistic logic in answer set programming, Theory
and Practice of Logic Programming 4 (2004) 325–354.

[20] M. Osorio, J.C. Nieves, C. Giannella, Useful transformations in answer set programming, in: A. Provetti,
T.C. Son (Eds.), Proceedings of the American Association for Artificial Intelligence, AAAI 2001 Spring
Symposium Series, Stanford, E.U., AAAI Press, 2001, pp. 146–152.

[21] D. Pearce, From here tothere: stable negation in logic programming, in: D.M. Gabbay, H. Wansing (Eds.),
What is Negation?, Kluwer Academic Publishers, Netherlands, 1999, pp. 161–181.

[22] D. Pearce, Stable inference as intuitionistic validity, Logic Programming 38 (1999) 79–91.
[23] D. Pearce, V. Sarsakov, T. Schaub, H. Tompits, S. Woltran, A polynomial translation of logic programs

with nested expressions into disjunctive logic programs: preliminary report, in: P.J. Stuckey (Ed.), Logic
Programming, 18th International Conference, ICLP 2002, August 2002, Copenhagen, Denmark, LNCS,
vol. 2401, Springer, 2002, pp. 405–420.

[24] A.S. Troelstra, D. van Dalen, Constructivism inMathematics: An Introduction, vol. II, North-Holland,
Amsterdam, 1988.

[25] D. van Dalen, Logic and Structure, second ed., Springer, Berlin, 1980.
[26] M. Zakharyaschev, F. Wolter, A. Chagrov, Advanced modal logic, in: D.M. Gabbay, F. Guenthner (Eds.),

Handbook of Philosophical Logic, second ed., vol. 3,Kluwer Academic Publishers, Dordrecht, 2001,
pp. 83–266.


	Safe beliefs for propositional theories
	Introduction
	Background
	Propositional logic
	Logic programs
	Basic notions on intermediate logics
	Intermediate logics
	General definitions


	Semantics for logic programs
	A logical approach
	Logical foundations for A-Prolog

	Safe beliefs for intermediate logics
	Preliminaries
	Reduction of theories
	Invariance of safe beliefs

	Program translations
	Conservative transformations
	Polynomial reduction of theories

	Conclusions
	Acknowledgement
	References


