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Abstract

We propose an extension of answer sets, that we call safe beliefs, that can be used to study several
properties and notions of answer sets and logic programming from a more general point of view.
Our definiton, based on intuitionistic logic and following ideas from D. Pearce [Stable inference
as intuitionistic validity, Logic Programming 38 (1999) 79-91], also provides a general approach to
define several semantics based on different logics or inference systems.

We prove that, in particular, intuitionistic logizan be replaced with any other proper intermediate
logic without modifying the resulting semanticg/e also show that the answer set semantics
satisfies an important property, the “extension by definition”, that can be used to construct program
translations. As a result we are able to provideofynomial translation from propositional theories
into the class of djunctive programs.
© 2004 Elsevier B.V. All rights reserved.

1. Introduction

Safe beliefs is an extension of the answer set (“stable model”) semajtibaf dlows
the use of arbitrary propositional theories lagic programs. The official definition of
answer sets for augmentedograms, due to Lifschitz et all1{], is based in finding
minimal models of some reduced logic programs. Studies from several authors in the
context answer sets have provided interesting relations of this semantic operator with
monotonic propositional logics.
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Work that relates answer sets with classical logic can be foun8,irf] Erdem and
Lifschitz relate answer sets and supported modelglin\Work that relates answer sets
with epistemic and modal logic can be found B1[1]. Our work follows an approach,
originally proposed by Pearc2]], that makes use ahtuitionistic logic. Further research
from Pearce§,21] served to develop the equilibrium logic that can also be considered as
an extension of answer sets.

Safe beliés are then defined as extensions of theories satisfying certain consistency and
completeness conditions. The use of intuit&igilogic as the underlying inference system
seems appropriate since, according toB8wver, we can identify a formulA with “I know
A”. Non-monotonic inference can be achieved determining some formulas that we can
“safely believe” in order to produce new knowledge. The actual definition of safe beliefs,
given later in this paper, formalizes the idea.

As a major advantage of this logic basmgbroach we can study common notions and
properties of answer sets from a more general point of view. We do not need, for instance,
any particular assumptions about the form or syntax that logic programs should have. The
definition of answer sets is automaticallytemded to deal with arbitrary propositional
theories. Moreover, other propositional logj even modal or temporal logics, can be used
as the underlying inference system to produferent semantic operators with additional
or extended features.

One of the main theorems of this paper shows that, in particular, any propositional
logic, strictly weaker than classical logic astonger than intuitiorstic logic, can be used
in the definition of safe beliefs without modifg the resulting semantic operator. Several
applications and theoretical consequencehisfresult are also discussed. This result can
be used to show that, in fact, our extension of answer sets is equivalent to the one provided
by Pearce’s equilibrium logic.

We also devote one section to the study of translations for logic programs under
this generalizedapproach. We explore the notion of conservative transformations and,
extending ideas from§], we propose a definition of strongconservative transformation.

We show for instace that adding new atoms “by definition” to logic programs is an
operation that preserves thensantics in a strong way. We also observe that this is an
important property of answer sets that should be considered when studying properties of
other semantics.

Another contribution of this paper is to present a translation, with this sort of strong
properties, that can be used to reduce any piitipoal theory into the class of augmented
programs. Other translations, like the ones presente@3) §an be used to provide a
polynomial reduction of arbitrary propositionalgories into disjunctive logic programs.

The material included in this paper is an extension and revision of earlier i8]

18] already presented in workshops and conferences.

Our paper is structured as follows: Bection 2we briefly present the language of
propositional logic and several classes of togiograms commonly found in literature.

We also reviewsome basic natins and definitions of intermediate logics and present some

simple results. IrBection 3we introduce the semantics of answer sets and safe beliefs, we
also discuss the relations between the two approachededtion 4we present the first

of our main theorems, the invariance of safe beliefs with respect to the underlying logic.
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In Section 5we explore the idea of strong conservative transformations and provide our
translation of arbitrary theories into augmented programs.

2. Background

We review in this section some basic concepts and definitions used throughout this
paper. First we introducén¢ language of propositional logic, and use it to define some
classes of programs commonly found in literature. Finally we make some comments on
intermediate logics that will be used in later sections to provide a logical framework for
logic programming and non-monotonic reasoning.

2.1. Propositional logic

We use the complete set of propositional formulas in order to describe rules and
information within logic programs. Formally we consider a language built from an alphabet
containing: a denumerable sétof elements calledtomsor atomic formulasthe 2-place
connectives\, v, —; the0-place connective.; and auxiliary symbols(, ). Formulas are
constructed as usual in logic. The formilas introduced as an abbreviation of — L,
—Aas an abbreviationok — 1, andA <> B as an abbreviationgfA — B)A(B — A).

The notationA < B is just another way of writing the formula — A.

A theoryis a set of formulas, we restrict our attention to finite theories. For a given
theoryT its signature denotedL, is the set of toms that occur in the theorly. Observe
that, since we consider finite theories, their signatures are also finitierd is either an
atoma (a pogtive literal) or a negated atoma (anegaive literal). Given a theoryl we
also define the negated theofyf = {—=A| Ae T}.

2.2. Logic programs

In our context alogic program is just a propositional theory, and @dass of logic
programsis a set ofbgic programs. We can think, in fact, of the wotdsoryandprogram
as synonyms; we use the former when stating general results in mathematical logic, and
the latter when dealing with logic programs @y a particuhr syntax and/or semantics.

We use he symboPrp to denote the class containind ptopositional logic programs.
A postive theory(or program) is one that does not contain occurrences of the connective
L (except for those in the formula abbreviated by, we usePos to denote the set of all
positivetheories.

The syntax of formulas within logic programs is usually defined in terms of special
formulas know as clauses. éauseis, in general, a formuldl <« B with implication
as the principal connective. The formulblsand B are known as théeadandbody of
the clause respectively. Theespal case of a clause with the form < B is known as a
constraintand the head is said to be empty. Each fornmtdilavhose principal connective
is not implication, is know as factand is associated with the clauble<« T that has an
empty body.

We introduce now some of the classes of programs commonly found in literature.
An augmented clausis a clause Wwere bothH and B can be arbitrary logic formulas
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built from the connectives\, v and— arbitrarily nested. Note, however, that embedded
implications are not allowed in augmented clauses.aigmented prograns a logic
program that contains only augmented clauses, and the class of all augmented programs is
denotedAug.

A disjunctive clausés built from a (non-empty) disjunction of atoms in the head and a
conjunction of literals in the body. A disjunctive clause has then the form

hiv.--vhy < biA-- - AbmAbnr1t A+ Abmp

where eacln; andbj is an atomn > 1, m > 0 andl > 0. A disjunctive programis then
defined as a program containing only disjunctive formulas, and the class of all disjunctive
programs is denoteBis. Observe tht, in particular, constraints are not allowed inside
disjunctive programs.

Example 1. The following are examples of the clauses just defined

a<« (b—o. propositional
—(pA—Qq) < aVv (=bAc). augmented
avb<«<cadna—e disjunctive

Also observe that these classes of programs sdbisfyc Aug c Prp.

2.3. Basic notions on intermediate logics

This paper follows a line of research aimed to provide foundations of logic
programming in terms of mathematical logic. We found that intermediate logics are
particularly useful for this approach. Intuitionistic and multivalued logics are briefly
described in the following paragraphs. A more complete background on these logics can
be found in R6]. Some notation, definitions and simple results are given at the end of this
section.

2.3.1. Internediate logics

Some logics can be defined in terms of truth values and evaluation functions. Godel
defined the mdltivalued logics G, with i truth values, where anodel of a formula is a
truth assjnment to the atoms that, when propagated over its connectives, evaluates to
some degnatedtrue value. A fomulais atautologyif it is true for every possible truth
assignment. Observe thapb®orresponds exactly to the definition of classical logic C.

Another important logic, which has beengeat area of interest in recent years, is
intuitionistic logic. This logic is based on the conceptmbof, rathe thantruth as in
classical logic. Intuitionistic logic, denoted I, can be defined in terms of Hilbert type proof
systems of axiomand infeence rules where the provable formulas are knowth@grems
Equivalent definitions can be given in terms of natural deduction systems and Kripke
models, seed4,25]. Surprisingly no definition using a truth table scheme is possitie [

Godel observed that there are infinitely many logics whose set of provable formulas
lies between intuitionistic and classical log2g. We have, in particular, the following
proposition, where- denotes proper contention of the set of provable formulas (theorems
or tautologies) on each logic.
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Proposition 2 ([26]). |C---CGit1 CG C---CG3cC G =C.

Any logic! whose set of provable formulas lies between intuitionistic and classical
logic (inclusive), are known amtermediate logicsA proper intermediate logids an
intermediate logic that is not the classical oReoposition 2shows that the multivalued
logics G are all intermediate logics.

The logic G, in particular, corresponds to the strongest proper intermediate [2jic [
Alternate definitbns for the logic G are also available. Thdere and There HT, logic
defined using Kripke models with two worlds is equivalent to the logic Eallowing an
axiomatic approach the logic Sm, which is obtained adding the new axiom scheme

(= p > (P> —>p—>p

to the set of intuitionistic axioms, is equivalent to the logig G

Proposition 2also seems to imply that intuitionistic logic is less powerful than classical
logic since, in fact, it proves “less” formula&ddel showed, however, that the provable
formulas of classical logic are actually embedded inside intuitionistic logic. A slightly
more general version of thigsult is presented later Proposition 3

Intuitionistic logic, as well as the proper intermediate logics, are able to distinguish
betweena and ——a. This pioperty, as we will see later, makes these logics suitable to
characterize notions of logic programming.

2.3.2. General definitions

We use he standard notatianx F to denote thatF is a provabé formula (ataublogy
or a theorem) of logic X. IfT is a theory we understand the symbblx F to mean
thatx (Fy A --- A Fy) — F for some formulaR contained inT. This is not the usual
definition given in literature, but can be shown to be equivalent because of results like the
Deduction TheoremAlso, for a given heoryT, the seCnx (T) = {F | T x F}isknown
as the set of X-consequencesiaf

Using this notation the result about classikajic embedded insideniuitionistic logic
can be presented as follows.

Proposition 3 ([19]). Let T be aheory and let F be a formula. F¢ F if and only if
T ——F.

Similarly, if U is a thery, we use the symbdl Fx U to denoteT Fx F for every
F € U. Then wecan say that two theorieg and T, are equivalent, with respect to logic
X anddenotedl; =x Ty, if it is the case that bot; Fx T> and T2 Fx T1. Obseve that
Ty =x Teifandonly if Cnx(T1) = Cnx(T2).
Atheory T is said to be X-consistent if it is not the case thaty L. Itis easy to show,
see for instance], that the definition does not depend on the particular logic chosen, so
we can drop the prefix “X from the notation.

1a logic in the propositional case can be defined as a set of propositional formulas closed under logical
consequence (i.enodus ponenandsubstitutior).
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Lemma4 ([25]). LetX andY be two intermediate logics, and let T be a theory. Then T
is X-consistent if and only if it i¥ -consistent.

For a theoryT and a formulaF we say thaf is X-determinedy T if it is the case that
eitherT Fx F or T x —F. A theoryis said to be Xcompletaf every formulaF, with
Lr C L7 is X-determined by the theprSimilarly, a theory iditeral X-completdf every
atom inLy is X-determined. Itis clear that completeness implies literal completeness. The
converse is also true.

Lemma5. LetX beanintermediate logic and let T be a theory. If T is litebédlcomplete
then T is alsoX-complete.

Proof. Observe, sinc@ is literal X-complete we can define a unique classical two valued
interpretationl suchthatl(@) = 1if T Fx a andl(a) = 0 otherwise. Tien for any
formula F it is easy to verify, using structural induction over the connectiveE athat

T x Fif | isanodel of F andT +x —F otherwise. [J

We end this sction with a simple lemma that formally presents an important property
of intermediate logics that we will freely use in the following sections. A proof in the
context of intuitionistic logic is given ing5], but this same proof holds under any other
intermediate logic.

Lemma6. Let P be alheory and let A, B be a pair of formulas. If' s a theory
obtained from P by replacing some occurrences of A with B, and T is a theory such
that T -x A < B, for an intemedate logicX, then TU P =x T U P".

3. Semanticsfor logic programs

We use semntics to assign a meaning to a given logic program. Given a class of logic
programsC, a semanticoperatorSem is a function that assigns to each progfara C
some sets of atontgl € Lp. Thesesets of abms are usually some “preferred” models of
the logic programP.

A popular semantic operator for logic programs is the answer set semantics. Some of
the main features of answer sets are its non-monotonicity and the integration of negation as
failure.2 These sorts of features are extremely ubtf deal with concepts such as default
knowledge and modeling inertial rules. The answer set semantics constitutes the formal
basement of the A-Prolog programming paradigm and proved to be particularly useful for
several eal life and research applications.

The actual definition of answer sets is, however, not required for the purposes of this
paper, the reader is referred tt] for more details. It is just impdant to mention that,
from the original formal definitn, the relation of the semtes with a particular logic is
not entirely clear and seems to be hidden urgdesd hoc setting of reductions and minimal
models.

2The negéon symbol we use-t) will play the role of the negation as failure in logic programs. The authors
in [10] use, howeverthe synbol ~ instead.
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3.1. Alogical approach

Consider thecase of a logic agent. The task of such an agent is, when provided with
some initial knowledge describing its world or application domain, to do inference and
produce new knowledge. We would like our agent, for instance, to be able to answer queries
and solve problems in its application domain.

We can use a propositional theofly to represent the initial knowledge of our agent.
Under the premise that is consistent, it makes sge to say that the ageknows Fif the
formulaF is an intuitionistic consequence of the thedryTheuse of intuitionistic logic,

a logic of knowledge, as the underlying infe® system seems a natural choice for this
approach.

But we dso want our agent to do non-monotonic inference. Informally speaking we
will allow our agent toguessor supposethings in oder to make more inference. We
must be cautious, however, since we don’t want our agent to precipitate conclusions or
make unnecessary assumptions. The agent shouldopposeacts if they are helpful to
provide new knowledge. The following definition formalizes this idea.

Definition 7. Let T be a theory and IeE be a theory withCg € L1. We say tlat the
theoryE is an Fexplnationof T if the theoryT U——E is both consistent and I-complete.

A very natural reading of this definition, in the context of our logic agent, would be
that:“A theory E is an explanatio of theagent’s world if(i) it is consistent with its initial
knowledge andii) supposing that E is true is enough to answer any possible question in
its domain”. This supposingcorresponds to the double negation in the intuitionistic proof
system used as the underlying inference system.

The agent is allowed now tbdieve things in oder to obtain a complete explanation
of its world. If E is an I-explanation of, it makes sense to say that the agbdteves F
(assumingk) if the formula F is an intuitionistic consequence &f Therecan also be, of
course, several explanations for a given initial knowledge. Brave and cautious beliefs can
be defined in the natural way. The agbravely believea formulaif there is an explanation
that makes the fonula true, andautiously believea formula if that formula is true under
all possible explanations of its initial knowledge.

The explanations for a given theory naturally define semantics for logic programs, we
call this the (intuitionistickafe belief semantics

Definition 8. Let T be a theory. IfE is an I-explanation ofT then the set of atoms
Cn(T U—-—E)N Lt is an Fsafe leliefof T.

Observe that this definition does not impose any particular restriction in the form or
syntax that the logic programs should have.dur particular case this definition allows
the use of erbedded implications inside formulas, a feature that is not very common in
current logic progranming paradigms. The use of thellfset of propositional formulas
can be useful to describe problems in a more convenient and natural way.

Another important property of safe beliefs is that its definition naturally follows from
provability relations in a well known mathematical logic, namely intuitionistic logic,
providing solid foundations for our approach. The relation with logic is more clear and
direct than, for instance, in the original definition of answer sets.
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3.2. Logical foundations for A-Prolog

Despite the apparent lack of a logical intuition in the definition of answer sets, it is
possible to show that they actually coincide with safe beliefs (in the class of augmented
programs). This is not only a significant property of safe beliefs, but also serves to provide
sdid logical foundations for the A-Prolog pragnming paradigm and allows natural
generalizations.

The use of alogic based approach to study answer sets has been proved to be quite useful
in several circumstances. T&dy of notions such as strong equivalence between logic
programs s closely related with equivalence in intermediate l08j&8][ Other interesting
applications, such as the definition of a dghing scheme for logicrpgramming, is also
possible by taking advantage of the 3-valued nature of the logidG7].

Definition 8 follows from a line of research, initiated by Pear@?][ that offered a
characterization of answer sets in terms of intuitionistic logic. Pearce proposed an approach
based on completions of theories, very similar to our explanations but based on the logic
HT,® and showed that they are equivalent to #wuilibrium logic also developed by
himself [21,22]. The equilibrium modelsof this logic, which are defined for arbitrary
propositional theories, are some disting@drHT models satisfying certain minimality
conditions? We can rephrase this result as follows:

Proposition 9 ([22]). Let T beany theoryA theory E is arHT-explandion of the theory
T if and only if the set of atoms GR(T U ——E) N L1 is an equilibrium model of E.

Pearce also investigated intuitionistic expations, but restricted to explanations
composed exclusively by negated atoms] &ie used them to chacterize answer sets
of disjunctive logic programs2p]. His characterization, however, was not intended to
characterize answer sets for other classesrofams. In fact the characterization does
not capture correctly the answer sets of programs containing negation in thelBpdd [
a nore recent papeB8], together vith Lifschitz and Valverde, Pearce was able to show that
equilibrium models actually characterize answer sets for augmented programs, the most
general class of programs where a definition for answer sets is available.

Proposition 10 ([8]). For any augmented program P and any set M of atoms, the set M
is an equilibrium model of P iff M is an answer set of P.

Recall that the definition of safe beliefs is based on the inference system provided
by intuitionistic logic, but analogous defilons can be naturally defined for any other
propositional logic.Proposition 9deals, for instance, with the case of HT-explanations.
An interesting question left open is whether different logics produce different semantics
for logic programs, or if all of them collapse to the same non-monotonic inference system.

If we use classical logic the answer is immeg@i and quite simple, classical safe beliefs
correspond just to regular monotonic classical models. But the situation is not that clear

3They are intoduced in a somewhat different manner, but a claspéction shows that the difference is just a
métter of notation.

4 The formal definition ofequilibrium modelss not required for the purposes of this paper. We mention them
just to state the relations between differepproaches to the study of answer sets.
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for the rest of the proper intermediate logics. One of the main contributions of this paper
is to finally answer this question. Bection 4we prove that dlproper intermediate logics
capture exactly the same models as safe beliefs.

The characterization of answer sets in terms of I-explanations, which was originally
presented in19], is now rediscovered as a simple consequence of this result. Therefore, at
the end of Section 4wecan prove that the semantics of answer sets are equivalent to I-safe
beliefs for augmented programs, providing logical foundations for the A-Prolog paradigm.

4. Safebeliefsfor intermediatelogics

This section is concentrated in the proof of one of the main results of this paper, namely
the invariance of safe beliefs with respect téfatient proper intermediate logics. In order
to do so we present first some preliminagyrimas that are used in the main proof. We
define then some reductions of theories that, as a theoretical application, are quite useful to
complete our proof. At the end of this section we present the formal proof of our statement.

4.1. Preliminaries

The following is a particular case of a proposition it6]. The original proposition
presents a class of formulas that are irrelevant in the proof of a positive formula from
positive premises. We ughis result to remove premises of the form-M, for a setM
of atoms, when we are dealing with proofs of positive formulas. Recall the definition of
postive theoriesfrom Section 2.2

Lemmall ([16]). Let T be a positive theory, let M be a set of atoms and let F be a
postive formula. If TU —=—=M k| F then T F.

The next lemma shows a particular case where provability relations of classical and
intuitionistic logics coincide. Namely, if &neory has the property that it can prove true —
using classical logic — all the atoms in its own signature, then the use of intuitionistic logic
will preserve this poperty of the theory.

Lemmal2. Let T be a positive theory. If Fc L1 then TH| Lt.

Proof. Leta be an atom irCt. Wecan replace every atom in the proofbf-c a to obtain

a vdid proof of T, ¢ a where the theory, is obtained by replang all atoms occurring
in T with the atoma. Obtain nowthe pogramT, applying the following replacements on
Ta until no more replaces can be done:

e T ATwithT. eana,anT, T Aawitha.
e a Vv awith a. eaVv T, Tva TvTwithT.
e T — awith a. ea—aa— T,T — TwithT.

It is clear thatT, =x T, for any intermediate logic X. /50 observe that each formula in
Ta must be reduced either toor T, i.e. T, C {T, a}. Since we must havg, +-c a then

it must be the case that € T;. It is now an mmediate consequence thef | a and,
restoring the equivalent theofly, T, | a.
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Now letD = {x < y | X,y € L7}, itfollows thatT;UD +; aand, sincel,UD = T,
we may onclude thafl - a. O

The following lemma shows that we can eliminate premises whose language has no
relation with the formula that we want to prove.

Lemma 13. Let T and U be two theories, and let F be a formula such ihatry N Lu =
@. If the theory U $ oonsistent and TU U Fx F, for some mtermediate logicX, then
THx F.

Proof. Since he theoryJ is consistent it has, agast, one classical modél. In theproof
of T UU Fx F we can replace each atare £y with T if a € M and with L if a ¢ M.
SinceT andF do not contain any of the atonase Ly, these fomulas are not modified.
While all the formulas irlJ are replaced with theorems tautologies fron the underlying
logic. This leaes a proof foflT x F. O

4.2. Reduction of theories

In this section we present somealreetions of theories and several of their properties in
terms of intermdiate logics. The notion of reductions and/or transformations has several
applications in logic programming; see for instang8&§,20]. Our set of reductions can be
used, in particular, as a thestical tool in the proof ofTheorem 25

The first of these reductions evaluates the effect of the connectias T° inside a
logic program. After applying this reduction all occurrences ofill be removed, exept
for those that appear in the forfh — L as a negation or if the entire theory is reduced
to the singé connectivel. Besices, no occurrence of the connectivawill remain in the
program.

Definition 14. Given a formulaF we define its reduction with respect tb, denoted
Reduce (F), as the formula obtaing goplying the following replacements da until no
more replaces can be doneAfis any formula then replace

e ANTorT A Awith A. e AN _LorL AAwith L.
e AvTorT v AwithT. e Av L orL v Awith A.
eA— Torl — AwithT. e T — Awith A.

Then, for a given theory, we defineReduce, (T) = {L} if there is any formuldc € T
such ttat Reduce (F) = L and, otherwise,

Reduce (T) = {Reduce (F) | F € T and Reduce(F) # T}.

It follows immediately from the definition that the reduction with respect tof any
theory is equivalent, under any intermediate logic, to the original theory.

Proposition 15. For any theory T and any termediate logicX, we have that T =x
Reduce (T).

5 Formally T is not a connective but an abbreviation of the formula> L. It is usefd, in order to keep the
presentation simple, to assume tfiais in fact a connective.
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Proof. It suffices to observe that each one of the replacements preserve equivalence with
respect tantuitionistic logic. They are valid, in particular, in any intermediate logiEl

The next reduction works, given a g€t of atoms, assuming that the atoms contained
in M are false (le. asuming—M) and ralucing a theory using this information. One
of the important properties of this reduction is that, after applying it, the reduced theory
will not contain any of the atoms iM. The reduction also preserves equivalence under
intermediate logics appeling the set of premisesM.

Definition 16. Let T be a theory and lé¥l be a set of atoms. L&t’ be the theory obtained
replacing each occurrence of atomne M in T with the connectivel. Then we @fine the
reduction ReduceT, —=M) = Reduce, (T').

Proposition 17. For any theory T, any intenediate logicX and any set M of atoms, we
have that TU =M =x Redwcel(T,—=M) U =M.

Proof. It follows from Proposition 15and the fact that, for any atom, we have that
—atFxa< L. O

Our last reduction is similaiotthe previous one. Given a séf of atoms it evaluates
the effect on alteory of adding the premises—M. Since weare interested in preserving
equivalence with respect to intermediate logics, the reduction can only take effect inside
negated subformulas. Only atoms occurring in formufas— L are replaced by the
reduction.

Definition 18. Let T be a theory and leM be a set of atoms. Let’ be the theory
obtained by replacing bbccurrences of atoms € M in T with the connectivel if the
occurrence of the atom appears within a formkla> L. Then we @fine the reduction
RedweaT, ——M) = Reduce, (T).

Proposition 19. For any theory T, any intenediate logicX and any set M of atoms, we
have that TU =——M =x Redwce2d T, =——M) U =—M.

Proof. It also follows fromProposition 15and the fact that for any formulg, and if we
replace the occurrences of an atarfor T to obtainF’, then we lave that-—a x —F <
-F’. O

Example 20. This example illustrates the use of these reductions. Consider the following
theoryT:

(anb)v-=(cad).
bad—b.
(c— (a—hb)ve

In order to compute Reduc€l, {—b}) we have to replace all occurrences of the atom
with the connectivel. and successively apply the Reduaeplacements.

(anLl)v-(cad). Lv—=(Aad. —(cvd).
1lAd— L. = 1 — 1. = T.
c— (a— 1) ve (c—(a— 1) ve c— (a— 1) ve
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So that, after one more apliten of the reduction Reduce the theory T/ =
Redwel(T, {—b}) obtained is:

=(cAd).
(c—>(@a— 1)) ve.

If we compute nowl” = RedwceaT’, {——a, ——c}) we start by replacing occurrences of
a andc, that appear under the scope of a negation, with the connettmed we apply
then Reluce :

—(T vd). —d.
Cc— (T—1)ve — (c— L)ve

Observe now that, as a result of the application of Reduce2, a new negation has been
produced in the last formula. We can therefore apply the reduction again to obtain
T"” = RedwedT”, {——a, =—c}) = {—d, €}.

As the prevous example shows, in some cases the reduction Reduce2 can be applied
several times over a theory to produce further simplifications. We use the symbol
Redwce2 (P, ——M) to denote the theory obtained after successive applications of
Redwce2 until no more reductions can be obtained. We can present now a reduction that
integrates dlprevious ones.

Definition 21. Let T be a theory and leM1, M> be two dsjoint sets of atoms. We define
ReducegT, =M1, =——M>) = RedwceZ (Redwcel(T, =M7), =——M>).

Proposition 22. For any theory T, any intenediate logicX and any pair of disjoint sets
M1, M2 of atoms, we have that

T U=M1U-==M =x ReduceT, =M1, =——M>) U =M1 U —==M> .
Proof. It follows from Propositions 1and19. O

Also observe that, according to the notatiof the previous proposition, if the sets
satisfyM1 U M2 = L7 then the thery Reduc€T, =M, =——My) must be a posite theory.
This is because the reductiondRee2 involved could be iteratively applied while negation
is still occurring in the reduced theory.

4.3. Invariance of safe beliefs

One of the major entributions of this paper is to prove that intuitionistic logic, used
to define the semantics of safe beliefs, carrdqggaced with any other intermediate logic
without modifying the models that the semantics would capture as safe beliefs. The formal
staement is given imMheorem 25t the end of this section.

We reed first the following simple lemma which is used to obtain, from every X-
sde belief of a given theory, a “canonical” X-explanation of the theory. This canonical
explanation has the property of being always X-complete and composed only by literals.
Thesecanonical explanationare useful to take advantage of the reductions we presented
in the prevous section.
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Lemma23. Let T be aheory and let M be, for some intermediate logic an X-safe
bdief of T. The theory E= M U —~(L1 \ M) is anX-explandion of T.

Proof. If M is an X-safe belief of the theof¥ then, by definition, there must be a theory
E’ suchthatE’ is an X-explanation o andM = Cnx(T U—-—E")N L.

First we will show thatE Fx E’. Suppose that there is a formuR € E’ suchthat
E t/x F, sinceE is clearly X-complete thelt x —F. Recall now that, by construction,
T U—-=E’ x E and, thereforeT U ——E’ -x —F. But this would imply that the theory
T U —=—E’is inconsistent and contradiction arises.

It is clear, sinceE is consistent, that alsd U ——E is consistent. Finally, since
E Fx E’, we have thaP U ——E x P U —==E’. The two heories must have the same
X-consequences and, in particulBrly ——E is also X-complete. [

The following proposition solves one particular case of our main theorem, it shows that
Gz-safe beliefs are also I-safe beliefs. As we can see in the prddf@drem 28his is the
most important case since all other eguérces will follow from this one.

Proposition 24. Let T be a lheory, let M be a set of atoms with Mt Lt and let
E = M U—=(Lt \ M). If the theory E is aGz-explanation of T, then E is also an |-
explnation of T.

Proof. SinceE is clearly consistent, we only need to show that ——E is, in particular,
literal I-complete. If we take an atom¢ M it is immediate, since we havea € E, that
T U—-—=E +; —a (recall that~; -———a — —a). We have only left to prove that, in fact,
TU—-=EH M.

By construction ofE we already know thal U ——E +g, M. Let T’ be the theory
RedweX(T, —(L1 \ M)) so that from Proposition 17it follows thatT’ U =—E kg, M.
Recall that the theory’ satisfiesCt: € M and, therefore, we can applemma 13to
obtainT’ U =—=M kg, M.

We can, equivalently, assume tHBtU AU ——M +; M whereA is a set of instances
of the axiom scheme

-G—-F—->((F>G)—->F)—>F D

that characterizes logic Sm. Without loss ohgeality, we may also assume that the theory
A satisfiesCa € M.

Let T” = RedwceZ (T, =——M) and letA’ = Redwce2 (A, ——M). By Proposition 19
we have thalT” U A’U—=—=M F; M whereT” andA’ are positive theories. We can now, by
Lemma 11 diminate the set=—M from the premises to obtai” U A’ - M. In paticular
we also have that” U A’ ¢ M.

Now observe that, since Redué¢edmpletely evaluates the negatiefs in the axioms
of the form (1), the setA’ can only contain classical tautologies. We may then omit the
set A’ to finally obtainT” ¢ M. Observenow that we must havé€t» = M and, by
Lemma 12T” I M. We can just retore——E as a set of premises and replacéwith
the orginal T to obtainT U ——E + M. O



76 M. Osorio et al. / Annals of Pure and Applied Logic 134 (2005) 63—-82

We are now eady to prove one of the major results of our paper. As we anticipated, it
shows that the definition of safe beliefs does not depend on the particular logic chosen as
the underlying inference system.

Theorem 25. Let T be aheory and letX, Y be two proper intermediate logics. A set M
of atoms is arX-safe belief of T if and only if it is & -safe béief of T.

Proof. If the setM is an X-safe belief off then, byLemma 23 the theoryE = M U
—(LT1 \ M) is an X-explanation off . Recall that G is the grongest proper intermediate
logic, thenit follows thak is also a G-explanation of the theor¥. Proposition 24mplies
that E is an I-explanation off and, since | is the weakest intermediate lodgcis a Y-
explanation ofT. Findly observe that, in factM = Cny (T U =——E) N Lt and therefore
M is a Y-safe beliefoff. O

As an immediate @ansequence of the previous theorem we may drop the prefix “X-”
from the notation of s&f beliefs. We B0 have the following corollary that states the
equivalence between the semantics of safe beliefs and answer sets.

Corollary 26. Let P be an augmented program. A set of atoms M is a safe belief of P if
and only if M is an answer set of P.

Proof. By the prevous theorem, we may assume thhiis a Gs-safe belief ofP. Now M
is a Gs-safe belief if and only if, byProposition 9M is an equilibrium model oP if and
only if, by Proposition 10M is an answer set d®. O

5. Program trandations

In this section we study several properties of translations for logic programs. It
comprises a revision and extension of the materiallij.[We present first the notion
of conservative transformations and, following ideas fr@pn We also present thstrong
version of this notion. Using this concepts we are able then to show a polynomial time
translation from propositional theoriesanthe class of disjunctive logic programs.

5.1. Conservative transformations

Suppose that we have a logic prograrand we want to compute its safe beliefs. The
task could be simplified if we are able t@mstruct another simpler logic prograR,
such that the safe beliefs oP and P’ are somehow related. We could then compute the
safe béiefs of P’ and recover those of the originBl. It is important, of course, that the
“recovery” of the safe beliefs d?, knowing those of’, can be done through a simple and
efficient method. A conservative transformation is a relation between logic programs that
can be used for this kind of application.

Definition 27. Let Sem be a semantic operator defined for a class of logic progtaand

let P, P’ € C. We saythat P’ is aconservative transformatioof the progranP, denoted

P2 b if £p C Lp and

SemP) = {MNLp | M e SemP))}.
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A conservative extensiois a similar notion, introduced in2], with the additional
conditionP € P’ onthe logic programs. Our definition is more general since it allows
the program to be modified or “transformed”, not only extended. The definition of a
conservative transformation was originally presented #.[

A conservative transformation of a logic progréhtan, possibly, introduce new atoms
(those inLp: \ Lp) in order to achieve simplifications. But, if we ignore these newly
introduced atoms, webtain exactly the answer sets Bf We rekr to these new atoms in
Lp \ Lp as theresavedatoms of the transformation. It is easy to verify that conservative
transformations define a transitive relation.

One patrticular case of a conservative extension, in the context of safe beliefs, is useful
to define new ams as abbreviations of formulas in the current program domain. The
extengon of programs by adding definitions is an important, and certainly desirable, feature
of the semantic of safe befs. We use SB to denote the safe belief semantics.

Theorem 28. Let P be a propositional logic program, let F be a formula such that
Lg € Lp andlet x be an atom notigp. P 5B opy {Xx < F}.

Proof. Let M be a safe beliefoPU{x < F}andletM’ = M N Lp = M\ {x}. Fdlowing
Lemma 23 we obtain thatP U {x < F} U =—=E U ==X is a consistent ahl-complete
theory whereE = M’ U —(Lp \ M’) and the seiX is either{x} (if x € M) or {—=x}
(otherwise). Observe that the thedtyis complete so theE | F (or—F) where, because
of consistency, the number of negations should match the number of negations of the atom
x in X. It follows that{x <+ F} U —-—=E ==X and thus we may remove—X from the
list of premises to olatin the consistent and I-complete the®y{x < F} U =—=E. In this
staement the ator now only appears in the premige«< F and therefore, by replacing
x with F, we obtain the theorerr < F that we can also drop to finally obtaihU ——E
as a consistent and I-complete theory. It follows tBandM’ correspond, respectively, to
an l-explanation and a safe beliefBf

For the conerse take a safe belid¥l of the logic programP and let E be any
I-explanation of the progranP suchthat M = Cn(P U ——E) N Lp. Sincethe
theory P U ——=E is I-complete it decides, in particulaF,. It follows that the theory
P U {x «+ F} U —=—=E decides the new atom and, therefore, it constitutes also an I-
complete theory. Then we are able to conclude that the correspondiitj setCn (P U
{x & F} U—==E) N Lpyuix«F)} is a safe beliefoP. O

Conservative trasformatons may seem very effective in the context of logic
programming. However, they dot not satisfy an important property for concrete
programming applications. We would expect that making a conservative transformation
of one piece of a program would also result, “globally”, in a conservative transformation
for the whole program.

This is not true for simple conservative transformations as just defined. Consider the
two programsP; = {a < —b} and P, = {a, b < b}. According toDefinition 27, P,
is a conservative transformation & in the safe belief semantics since they both have
{a} as their unique safe belief. However, replaciRg with P, in the large program
P = {a < —b, b}, to obtain the progran®’ = {a, b < b, b}, will break this relation.

Now P has one safe beli¢b}, while the progranmP’ has only the safe beligf, b}.
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In order to ensure that making local transformations of code inside logic programs
will preserve global equivalence, we introduce the notion of a strong conservative
transfomation.

Definition 29. Let Sem be a semantic operator for a class of progr@an&iven two
logic programsP and P’ € C, such hat Lp < Lp/, we saythat P’ is a strong

. . nt . .
conservative translatioof P, denoted P Sent, P’, if for every logic programQ, such
Sem

thatLo N (Lp \ Lp) =0, PUQ — P'UQ.

The conditionCg N (Lp/\Lp) = ¥ staks that the progran3, used to extené, should
not contain any of the reserved atoms of the transformation. In an actual implementation
we could ensure this condition by defining a special set of atoms reserved for internal
transformations and not available to the user for writing programs. As we may expect,
strong conservative translations also define a transitive relation.

The particular case where there are no reserved atomg d.e= Lp/, is known as
strong equivalence between programs. This notion was originally introduc&jhere
the auhors provide a characterization of strong equivalence for augmented programs,
under the answer set semantics, using the HT logic. Their proof, however, is based on
the equilibrium logic and thus can be immediately extended, followirgposition %and
Theorem 25to safe beliefs for arbitrary propositional theories.

A study of relations between answer sets and the logis@lso presented iif] where
an alternative proof for the characterizatidrstsong equivalence, that does not require the
use o equilibrium models, is given.

Theorem 30 ([8,13]). Let P and P be two propositional logic programs such that
Lp=Lp. P25 Pifand only if P=g, P'.

An important feature of this result is that the corresponding proof also provides, if two
programsP andP’ are not strongly equivalent, a method to construct a certificate program
Q, i.e. a pogram such thaP U Q and P’ U Q have different safe beliefs.

Example3l. Let P = {a < —b}andletP’ = {a, b < b}. Both programs are equivalent,
in a weak sense, siactheyboth have only one safe beli¢d}. The proof method of
Theorem 30 see for hstance 13, can be used to construct the progr&n= {—a, b}
suchthatP U Q has one answer set, namébj}, while the programP’ U Q is inconsistent
and has no answer sets. Then we are able to conclude that the prd@m@mi$’ are not
strongly equivalent.

5.2. Polynomial reduction of theories

A translationis a function Tt C — C’, whereC andC’ are two classes of logic
programs. Janhunefd][discusses importat properties of program translations, relevant to
logic programming, for arbitrary semantic operators. Particular applications for the answer
set semantics are also given ir2f.
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Definition 32 ([7,23]). Let Sem be a semantic operator for a class of logic progfams
atransléion Tr: C — C’, where tte classesC, C’ C D are closed under uniofids said
to be:

polynomial if the time requied to compute TiP) is polynomial with respect to the

number of atomic formulas iR.
Sem

faithful if, for all programsP € C, P —— Tr(P).

strongly faithful if, for all programsP € C, P ﬂ Tr(P).

modular if, for all programsPy, P> € C, Tr(Pp U Po) = Tr(Py) U Tr(Py).
reductive if C’ € C and T(P’) = P’ for all programsP’ € C'.”

The property of a translation being polynomial (P) is related with the complexity
that an actual computer implementation of the translation should have. A faithful (F)
translation can be applied to a program preserving the semantics, while a strongly faithful
(S) transléion can also be appliddcally to some section of the program without altering
the semantics.

The last two properties deal with the form of the translation, not with its particular
sanantics. If a translation is modular (M) we cdugplit a program into several pieces and
then perform the translatiguiece by pieceA reductive (R) translation maps one class of
programs into some given subclass and the programs that already are in the “simplified”
subclass are not modified by the translation.

As a form of notation we say that a translation is PFM if it is simultaneously polynomial,
faithful and modular. Analogously, a PSMR translation is polynomial, strongly faithful,
modular and reductive. We can drop any of the letters from the notation if we are just
interested in some properties.

Proposition 33 ([23]). There is a PSM translation, for the the semantics of safe beliefs,
AugDis: Aug — Dis.

Using the machinery of logic, based &efinition 8 and results likeTheorem 30it is
also possible to provide a translation of logiograms, containing aitrary propositional
formulas, into augmented programs.

Definition 34. If a formula F contains a proper subformula — B, wherendther A
nor B contain more implications, we say thAt— B is asimple embedded implication
of the formulaF. We define ecursively the translation PrpAudPrp — Aug for every
propositional progrank, as fdlows:

e if P contains no clause with embedded implications tReis already an augmented
program and PrpAud) = P.

e if P contains some clause with embelded implications take a simple embedded
implication,A — B, from the formulaF. Take a new atom € £\ Lp notalready inP,

6 A class ofprogramsC is closed under union$ P, P, € C implies thatP, U P, € C.

7 The cefinition of amodulartranslation we introduce here corresponds to the one give2BlnJanhunenT]
presents a different definition which correspondsitadular+ reductive(whenC’ C C is satisfied).
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let F’ be the formula obtained by replacing the occurrencéocf> B in F with the
new atomx, and letP’ be the program obtained by replaciRgwith F’ in P. Also let

A={XAA— B, —AvB— X, xVvAv-B}.
We findly define PrpAugP) = PrpAug(P’ U A).

The recursive definition of Aug is well-founded since, on each recursion step, the
programP’ U A has one implication less thdh

Proposition 35. The translatiorPrpAug: Prp — Aug is PSMR.

Proof. The number of recursion steps required to complete the translation is exactly the
number of embedded implications in the pragr, therefore the translation is polynomial.

It is also clear, since PrpAug acts on one clause at a time and does not modify programs
already in the augmented class, that the translation is modular and reductive.

To judify that the recursion step is a strorapnservative transformation observe

that, from Theorem 28 P =B P U {Xx< (A— B)}. The kg point is that

{x< (A— B)} =g, A and, therefore, we also have the equivaleneuU
{Xx & (A— B)} =g, P’ U A. Using Theorem 30 and trangivity, we end up with

PE pua O

Current implementabins of the answer set programming paradigm restrict the syntax of
formulas to the class of disjunctive programs where, in particular, implication in the body
is not allowed. A common work around this limitation was to use the intuitive (classical)
equivalencé A — B) < (—A Vv B). This practcte, however, sometimes has the effect of
generating unexpected models (or the miss of expected ones) when computing answer sets.

The first rulex A A — B in our equivalence is used to model the behavior of the
implication symbol in the head. The second rti& v B — x comes from the classical
intuitive meaning of the implication connective. These two rules, however, are not enough
to provide the rquired equivalence in the logicsGThe lessntuitive third rulex v Av —B
— required for the equivalence to hold — was discovered, in fact, by an examination of
the G models of the original formula < (A — B). This points out the importance
of resluts like Theorem 3Qthat allows us to better understand the notion of answer sets,
proposing the logic @as a more correct guide for our intuition.

The results presented in this section allowaisetuce arbitrary propositional theories to
the simple class of digpictive logic programs. Thus providing a first approach to compute
safe beliés of a logic program.

Theorem 36. There is a PSM translatioRrpDis: Prp — Dis.

Proof. It follows immediately aftePropositions 3a&nd35. O

6. Conclusions

We provide gyeneral approach, that we call safe beliefs, that can be used to study several
properties and concepts of the answer set semantics. This approach is based on extensions
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of theories obtained by adding double negated formulas to logic programs in order to obtain
consistent and complete explanations. An important virtue of this formulation is that it
can be easily extended for other logics to produce different (sometimes non-monotonic)
inference systems.

One of the main entributions of this paper is to show that, in particular, any proper
intermediate logic can be used instead of intuitionistic logic to define safe beliefs and
obtain the same semantic operator that matteanswer sets for propositional theories. As
an important consequence we obtain that the alternate extension of answer sets provided
by the equilibrium logic is equivalent to our safe beliefs semantics. We were able then to
obtain a lot of feedback betweerethwo different approaches.

We alsostudy properties of translations for logic programs in the context of answer
set ppgramming. As another contribution we show that logic programs can be extended,
introducing new atoms by deftion, without modifying the seantical properties of the
program. This seems a desirable propengt should be taken into account when studying
other semantics.

Finally we provide a translation that cdre used to reduce arbitrary propositional
formulas to the class of augmented logic programs. Other reductions can be used to
complete the reductions and reach the clasdisiinctive logic programs. These sorts
of translations are important, since they offer a natural approach to solve the problem of
computing safe beliefs for aitbary propositional theories. Reductions, like those presented
in Section 4.2can also be useful to build efficient algorithms to compute answer sets.

An interesting topic for further researds to study possible generalizations and
extensons of the safe beliefs idea to incorpaglihear or nodal logics. This could provide
a logic programming paradigm for environments with limited resources, or where several
agents can solve problems reasoning alloeiknowledge and beliefs of each other.
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