
Encoding and Solving Problems

in Effectively Propositional

Logic

A thesis submitted to The University of Manchester

for the degree of Doctor of Philosophy

in the Faculty of Engineering and Physical Sciences

2007

Juan Antonio Navarro-Pérez
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Abstract

Solving problems by translating them to propositional satisfiability checking has

been found recently as a very successful approach in many application domains.

Highly optimised satisfiability solvers have been used to find solutions of diffi-

cult problems. Unfortunately, this approach does not always scale when either

parameters or the size of the problem description start to grow. Translations of

real-world problems tend to create large formulae, whose size is dominated by

slightly different copies of subformulae which had to be replicated many times.

This thesis investigates the alternative of using the language of effectively

propositional logic, which is a decidable fragment of first-order logic, as a formal-

ism to describe problems from applications in a much more succinct and natural

way. At the same time, this would allow to face scalability issues by the use of

reasoning techniques that work at a higher level of abstraction.

After a brief overview of existing propositional and effectively propositional

solving techniques, some new ideas are discussed on how the encoding of problems

affects the difficulty of solving them. Then, supporting the thesis hypothesis,

a pair of case studies are developed where problems from planning and model

checking are encoded using effectively propositional formulae. Incidentally, the

products of these case studies provide a rich and diverse set of benchmarks for

implementors of reasoning tools. The thesis also explores possible approaches

to efficiently solve the generated formulae, either by instantiation methods or

directly by reasoning at the effectively propositional level.

The work presented should be of value to communities solving problems in

planning and verification, who are provided with an alternative method to apply

in their domain, and to implementors of effectively propositional systems, to

whom a set of relevant benchmarks is provided. The encoding techniques may

also be of interest to a wider audience trying to apply automated deduction

methods in other research areas.
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Chapter 1

Introduction

The idea of designing intelligent machines, capable of automatically solving our

problems, is highly appealing and fascinating. A great amount of research has

been spent since the middle of the last century when scientists started developing

the theory and implementing some early systems to automate all sorts of tasks

which would, otherwise, be tedious or impractical for us humans to do.

The computer is one of the major breakthroughs in the development of a

universal machine, capable of systematically working out solutions of problems

that naturally arise from the most diverse applications, both in the contexts of

science and industry. In order to do so, however, one must first describe these

problems in a clear and unambiguous way, suitable for the computer to manage

and process.

In this setting, a very significant issue is how a problem, which was originally

found in a real-world situation, can be easily abstracted in such a way that it

becomes amenable for mechanical and even autonomous manipulation. Formal

languages have been devised for such purpose which allow, while removing any

possible ambiguity, to describe problems originating from different application

domains. Specifically designed algorithms and computer programs can then be

used to operate on these formal descriptions and produce an output which, when

translated back to the context of our original problem, represents the solutions

that we were looking for.

The language of mathematical logic, being one of the most well researched

formal languages, is also one of the first natural candidates to describe and repre-

sent problems for computers to solve. The main advantages of mathematical logic

are that, in the spirit of mathematics itself, it aims to be both unambiguous, with

13



14 Chapter 1. Introduction

expressions having a clearly defined meaning, and general, so that it is capable

of modelling a broad range of diverse applications.

1.1 Solving problems by translation to logic

The language of mathematical logic allows one to write formulae, syntactic ex-

pressions built from logical symbols, which are used to represent relations between

basic atomic elements in the domain of some logic. A real-world problem can be

formally specified by encoding it as a logical formula in such a way that solutions

of the problem correspond to models of the formula. In this context, a model

is an assignment of truth values which are given to some atomic elements of the

formula while trying to turn it into a true sentence.

Take for instance a problem in logistics. A delivery company needs to trans-

port a number of packages between various locations using a set of trucks and

aeroplanes. We can encode a description of this problem as a set of logical con-

straints (e.g. where the packages originally are, where do they need to be sent,

how packages are loaded and unloaded from vehicles, and how vehicles are driven

between locations), enabling us to use a computer program that automatically

searches for a logical model which satisfies all of these constraints. Problems

stated in this way are known as satisfiability problems.

The same problem, but seen from the opposite point of view, is closely related

to theorem proving. Imagine that we have a circuit, some electronic component,

together with a formal description of its intended functionality. In this case we can

pose the problem of finding an example of a case where the component behaves

incorrectly. If a solution is found, then it means that a ‘bug’ or some error in the

implementation has been found. Otherwise, if there are no solutions, a formal

proof can be produced which certifies the correctness of our component.

Satisfiability testing, and theorem proving are two standard reasoning tasks,

which can be used as tools to find solutions of problems or prove properties in

application domains which have been encoded as logical formulae. Systems are

then implemented which, given a formal description of some problem, automati-

cally search for solutions of the problem. Moreover, if no solution exists, it is then

also possible to produce a formal (mathematical) proof of the fact that, indeed,

no solutions exists.

Now, within mathematical logic, several languages with different trade-offs
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between complexity and expressibility have been defined. First-order logic, for

example, is able to express quantified statements that hold “for every” or “at

least one” element. Moreover, function symbols (e.g. the successor of a number)

also make it possible sometimes to describe domains with an infinite amount of

elements. All this expressive power comes, however, at a price. The satisfiability

problem for first-order logic is undecidable. This means that it is impossible to

devise an algorithm which, given any first-order formula as input, will eventu-

ally stop and correctly determine whether the formula has any models or not.

Nevertheless, this does not rule out the possibility of having extremely optimised

systems, such as Vampire (Riazanov and Voronkov, 2002), which exhibit a good

performance on a wide range of practical applications.

On the other hand of the spectrum, propositional logic is a language where

the only elements allowed are basic assertions (propositions) joined together with

simple logical connectives such as and , or , and not . The satisfiability problem

becomes decidable, but it is still rather challenging to solve (it is NP-complete).

A great effort has also been spent into developing efficient propositional satisfi-

ability solvers and, particularly in the last decade, the impressive achievements

obtained have enabled the application of these technologies in a number of indus-

trial strength applications.

1.2 The success of propositional translations

Not more than two decades ago, the first systems to test the satisfiability of propo-

sitional logical formulae were developed. Those early implementations were only

able to solve simple toy examples while running on dedicated research worksta-

tions (Mitchell, 2005). Nowadays —as a result of advances in theory, implemen-

tation techniques as well as the increase of raw computer power— off-the-shelf

satisfiability solvers, available to download from the web, are several orders of

magnitude more efficient and robust. As a consequence, this has also allowed the

embedding of satisfiability solving technology within more realistic applications.

It has long been known from theory that many interesting problems, those

in the NP complexity class, can be solved by translating them into the problem

of checking the satisfiability of a propositional logical formula. And some of the

first attempts to bring this result into practise sprung from the seminal works

of Kautz and Selman (1992, 1996) which tried to apply satisfiability technology
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to solve problems in the areas of planning, scheduling and logistics (Crawford

and Baker, 1994; Giunchiglia et al., 1998; Ferraris and Giunchiglia, 2000). It was

rather surprising, indeed, that a system which used a generic satisfiability solver

as a black box was competitive with state-of-the-art tailor-made implementations

of planning systems (Kautz, 2006).

Another area, which has greatly benefited from the recent improvements in

propositional satisfiability solvers, is that of electronic design automation. Tasks

such as microprocessor verification, automated test pattern generation, and prov-

ing circuit equivalence (Stephan et al., 1996; Marques Silva and Sakallah, 2000;

Velev and Bryant, 2001; Goldberg et al., 2001) are typical examples where propo-

sitional satisfiability has been successfully applied. The model checking and ver-

ification communities have also developed, since the seminal work of Biere et al.

(1999), tools which use a satisfiability solver as one of the main components pro-

viding search and inference services (Williams et al., 2000; Clarke et al., 2001;

Sorea, 2002; Eén and Sörensson, 2003; Chaki et al., 2003; Marques Silva, 2005).

Similar ideas have also been applied in diverse fields such as natural language

processing (Keselj and Cercone, 2007), knowledge representation (Lin and Zhao,

2004), security protocols (Armando and Compagna, 2002), cryptanalysis (Mas-

sacci and Marraro, 2000) and even bioinformatics (Lynce and Marques Silva,

2006). In general, almost any kind of combinatorial search problem can be ad-

dressed by using the reasoning services of propositional logic.

This approach, moreover, offers several advantages. First, after a problem has

been abstracted to a logical sentence, one can better focus on developing tech-

niques that more efficiently solve the core of the problem, without the distraction

of application specific details. The use of a simple, yet general and expressive,

formal language also leads to the development of simpler data structures and

more efficient algorithms. Moreover, the availability of highly optimised propo-

sitional reasoning tools (e.g. Moskewicz et al., 2001; Eén and Sörensson, 2005)

allows one to quickly build prototypes while importing years of research effort

into completely new application domains.

The rise of these applications, in return, have also driven the interest of the

research community into designing even more robust and efficient solvers. Per-

haps more importantly, it has also aided to recognise which are the problems

that we actually want to solve and how to better encode them using logic. A

common characteristic found in such applications is for example that, often, the
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propositional encodings contain many duplicates of nearly identical groups of

subformulae.

Scientists have started to pay more attention to these issues by exploiting

the structure and symmetries that are almost inherent to problems emerging

from real-world applications (Crawford et al., 1996; Sabharwal et al., 2003; Aloul

et al., 2003; Lynce and Marques Silva, 2007). Proposals for solvers that are able

to handle languages with a richer set of constructs, instead of the usual normal

forms, have also been put forward (Giunchiglia and Sebastiani, 2000; Thiffault

et al., 2004).

1.3 The effectively propositional alternative

A shortcoming of propositional logic is that it is not always very suitable to

succinctly express patterns, symmetries and structures that naturally arise in

typical applications. Problems encoded in propositional logic tend to contain

many isomorphic or nearly isomorphic groups of subformulae which appear when

one tries to assert, for example, that some common property is shared among

many different objects in the domain being described. More importantly the size

of the encodings tend to be dominated by these almost identical copies, thus

preventing the approach to scale for larger or more complex applications.

And, although techniques have been devised to extract and make use of this

structure information on propositional encodings, it is often the case that this

information was explicitly available when the problem was originally described

at some higher level of abstraction. The translation to propositional satisfiability

often tends to blur the information about the structure and symmetries of the

original problem, and bury it below large sets of seemingly meaningless formulae.

The main hypothesis of this thesis is therefore that an intermediate language,

between propositional and first-order logic, is more suitable to efficiently describe

and solve relevant classes of problems emerging from applications. The language

proposed, known as effectively propositional (EPR), allows the use of variables

and quantification but is limited to finite domains. Because of this restriction, the

language itself has the same expressive power as propositional logic (and thus the

reason of its name), but the added syntactic features allow to describe problems in

a more natural and succinct way, while preserving more of their original structure.

This logic, which also corresponds to the Bernays-Schönfinkel fragment of
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first-order logic, has also been of recent interest for the research community in

automated reasoning. The CADE ATP System Competitions (Sutcliffe and Sut-

tner, 2006), for example, host a special category of EPR problems to assess the

performance of first-order provers when dealing with this kind of formulae.

As we have mentioned, any effectively propositional formula can be trans-

lated, through a process known as grounding, into a plain propositional one. The

size of the resulting formula, however, is often exponential in the size of the orig-

inal input, thus rendering the use of standard satisfiability solvers impractical.

Alternatively the use of a first-order theorem prover, which is of course possible,

turned out not to be very efficient in applications with finite domains.

We expect that the use of a richer language would allow not only to describe

problems more compactly, but also to reason about them more efficiently. De-

signing a system that is able to natively handle effectively propositional formulae

may also have a number of advantages. First, because of using a more compact

representation, the system can be more memory efficient and, therefore, able to

process larger and more complex problems. Additionally, as being situated be-

tween two other well known and studied logical formalisms, it becomes perhaps

easier to integrate techniques and methodologies from both of them.

Some theoretical foundations, in order to develop efficient reasoning tools par-

ticularly geared towards effectively propositional formulae, have already been es-

tablished by authors such as Baumgartner and Tinelli (2003), as well as Ganzinger

and Korovin (2003). These are logical calculi which, directly at the effectively

propositional level, process and reason about the problems that one is trying

to solve. Researchers have also implemented systems, such as Darwin (Fuchs,

2004) and iProver (Korovin, 2006), based on those theories; and are eager to

test their capabilities when applied in realistic application domains.

Unfortunately, there is also currently a lack of benchmarks for researchers to

experiment and run tests with their systems. The TPTP Problem Library (Sut-

cliffe and Suttner, 1998), one of the main sources of benchmarks for the theorem

proving community, only contains a handful of effectively propositional formu-

lae, a significant portion of which are just translations from randomly generated

modal formulae. Moreover, the vast majority of these problems are now very

easily solved by state-of-the-art systems. One of the major contributions of the

research work summarised in this thesis, and in order to support our main hy-

pothesis, consists in the generation of many fresh new benchmarks that originate



1.4. Contributions of this thesis 19

from real-world application domains.

1.4 Contributions of this thesis

The research that has been carried out, and whose results are documented in

this thesis, generated contributions that can be grouped in two main sections:

those directly relating to propositional logic, and those which are applicable to

effectively propositional logic. More details about the impact that these contri-

butions potentially have in the research community are also discussed as part of

the conclusions in Chapter 8.

The first group, on contributions with respect to propositional logic, includes:

• A method for randomly generating non-clausal formulae which have a non-

trivial structure and are difficult for propositional reasoners to solve (Sec-

tion 3.1).

• Some first empirical studies on how the use of different clausal form trans-

lations affect the performance of satisfiability solvers working on the trans-

lated formulae (Sections 3.1 and 3.2).

• Insights on how to develop normal form translations that make use of spe-

cialised constraints in order to better reflect the structure of problems from

applications (Section 3.2).

In the second group, on contributions with respect to effectively propositional

logic, we have:

• The definition of a finite domain predicate logic, which puts syntactic sugar

on top of the effectively propositional logic to even more easily and naturally

describe problems from applications (Chapter 4).

• A method to encode LTL bounded model checking problems as an effec-

tively propositional formula, as well as some insights on how to improve

and extend this method (Chapter 5).

• Two different methods, and some variants, to encode planning problems as

effectively propositional formulae (Chapter 6).
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• Empirical work evaluating the performance of state-of-the-art theorem prov-

ing approaches when solving effectively propositional formulae originating

from these applications (Chapters 5 and 6).

• Ideas on how to efficiently implement techniques that limit the number of

generated instances when using a grounding approach (Chapter 7).

• Empirical evidence suggesting that, for effectively propositional formulae,

a one-shot approach is more efficient than incrementally search for finite

models of an increasing size (Chapter 7).

• A formal proof on how resolution can produce exponentially shorter refu-

tations at the effectively propositional, rather than just propositional, level

(Chapter 7).

• The proposal of a generalisation inference rule which, when combined to-

gether with resolution, is also able to produce exponentially shorter refuta-

tions. Also a formal study on how to incorporate this inference rule with

other standard techniques such as sort inference is provided (Chapter 7).

The following are also a number of contributions which are perhaps relevant to a

wider range of the research community:

• An overview of the state of the art on propositional (Chapter 2) and ef-

fectively propositional logic (Chapter 4), which might serve as a helpful

introductory text for students and researchers.

• Case studies on how two different applications can be encoded in effectively

propositional logic were developed (Chapters 5 and 6). These also serve as

a guideline, together with the finite domain predicate logic of Chapter 4,

on how to design similar translations for other application domains.

• As a by product of this research, a number of effectively propositional bench-

marks were generated from different applications (Chapters 5, 6 and 7). The

generated benchmarks have been made available to the community through

the TPTP Problem Library.
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1.5 Thesis overview

In Chapter 2 we present an overview of propositional logics and describe many of

the techniques that have been helpful in the design of efficient satisfiability solvers.

This includes a detailed account of the Davis-Logemann-Loveland algorithm, as

well as an inventory of several stochastic local search strategies.

In Chapter 3 some of our contributions in the context of encoding problems us-

ing propositional logic are discussed. This includes a proposal of a method to ran-

domly generate formulae which are non-clausal and have a non-trivial structure.

This was originally published in a paper at the Twentieth National Conference

on Artificial Intelligence (Navarro Pérez and Voronkov, 2005), and a summary

given at the Workshop on Automated Reasoning in 2005 (Navarro Pérez, 2005).

Some ideas with respect to possible improvements on clausal form translations,

the use of specialised types of constraints, as well as an empirical study on the

impact that the problem encoding has on the effectiveness of satisfiability solving

procedures are also discussed. An early draft proposing some of these ideas was

also presented at the Workshop on Automated Reasoning in 2006 (Navarro Pérez,

2006).

In Chapter 4 we formally introduce the logic of effectively propositional formu-

lae, and two of the main approaches to decide the satisfiability of these formulae

are surveyed. The first approach is to reduce the problem to checking the satisfi-

ability of a propositional formula, the second tries to apply inferences directly at

the effectively propositional level. Finally, the chapter closes with the definition

of a finite domain predicate logic, which is a syntactic extension of effectively

propositional formulae. A simpler version of this logic was originally given, in the

context of planning, at our paper to appear at the Harald Ganzinger memorial

volume (Navarro Pérez and Voronkov, 2007b).

In Chapter 5 we include the first case study on using the language of effectively

propositional logic to encode problems from applications. In this case we encode

the problem of LTL bounded model checking, which searches for counterexamples

to temporal properties that a system should always satisfy. Most of this material

was published at the Conference on Automated Deduction (Navarro Pérez and

Voronkov, 2007a), and also a summary at the Workshop on Automated Reasoning

in 2006 (Navarro Pérez, 2007). New previously unpublished material, with an

empirical evaluation of the approach presented, is now included in this chapter.

In Chapter 6 two different methods to encode planning problems as effectively
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propositional formulae are given. The first one, which was the main topic of our

paper in the Harald Ganzinger memorial volume (Navarro Pérez and Voronkov,

2007b), involves using predicates to encode fluents as they change over time

according to the actions being executed. The second alternative method involves

using a single predicate to encode the whole state of the system, and then encode

actions as relations between pairs of reachable states. An empirical evaluation is

also performed at the end of this chapter.

In Chapter 7 we study different methods to solve the kind of problems that

were generated in the two previous chapters. Some improvements on techniques,

which solve effectively propositional formulae by a reduction to plain propositional

logic, are proposed. A discussion of several inference rules, which work at the

effectively propositional level, is also given. We formally prove, in particular, an

exponential separation between the capabilities of propositional and effectively

propositional resolution. And a new inference rule, which we call generalisation

and can yield a further exponential improvement, is also proposed.

In Chapter 8 we finally present a discussion and overview of the material

presented in this thesis. Its major contributions are also highlighted, and their

possible impact on the research community assessed. Ideas that require further

exploration, as well as interesting questions left open, are also raised.



Chapter 2

Propositional logic

The problem of propositional satisfiability (SAT) has been recognised as a key

computational task in many fields of computer science. Several applications,

particularly in automated reasoning and artificial intelligence, rely on the imple-

mentation of efficient procedures capable of solving this problem. As the standard

example of NP-complete problems, SAT also features a central role in the theories

of complexity and computation.

Given a propositional expression built from standard logical connectives, the

problem is to decide whether there is a truth assignment which makes the expres-

sion evaluate to true. In the 1970s, after the famous NP-completeness theorem

from Cook (1971), it was realised that many relevant problems in the field can

be restated in terms of satisfiability. Nowadays an important set of industrial

problems, notably from the domains of verification and planning, are tackled by

first translating them into satisfiability checking.

Propositional satisfiability techniques have been successfully applied to per-

form tasks such as microprocessor verification, automated test pattern genera-

tion, and proving circuit equivalence (Marques Silva and Sakallah, 2000; Stephan

et al., 1996; Velev and Bryant, 2001). Significant results have also been obtained

in the areas of model checking and verification where tools for testing hardware

and software components have been developed (Biere et al., 1999; Chaki et al.,

2003). Applications have also arisen in the domains of planning, scheduling and

logistics (Kautz and Selman, 1992, 1996) encouraging the research in methods to

efficiently solve this problem.

The NP-complete complexity class has been traditionally associated with

problems that are particularly challenging and difficult to solve. As a simplis-

23
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tic but commonly accepted belief, this kind of problems are considered as in-

tractable in the general case. Surprisingly enough, as a consequence of a deeper

understanding of the problem and the availability of more powerful computing

resources, it has been possible to develop systems efficient enough to enable the

use of satisfiability solving procedures in industrial applications.

In this chapter we will first define the syntax and semantics of propositional

logic which lies at the core of the SAT problem. We will then also discuss some

normal form translations and preprocessing techniques that have been proposed

in order to further simplify formula encodings. The remainder of the chapter

includes a brief overview on the state of the art of both complete and incomplete

decision procedures for satisfiability checking.

A complete decision procedure is one that takes a formula as input and always

terminates returning either ‘yes’ or ‘no’ as answer to whether the formula is sat-

isfiable or not. The first such satisfiability algorithm is often attributed to Davis

and Putnam (1960) for their method based in resolution. This algorithm, how-

ever, suffers from memory explosion and thus an improved version was proposed

two years later by Davis, Logemann, and Loveland (1962). Using search instead

of resolution, the DLL algorithm is still the basic foundation of many modern

satisfiability solvers.

On the other hand, an incomplete procedure is one that answers ‘yes’, when a

solution is found, or ‘don’t know’, when the search has run long enough without

finding any solution. Such procedures are usually based on stochastic local search

methods that, starting with an arbitrary truth assignment, make small changes

to this assignment trying to get closer to a solution. Since the algorithm does

not keep track of the assignments already attempted it is not guaranteed to find

a solution, nor it is able to determine the unsatisfiability of a formula. As we will

see, some of the most successful implementations are variants of the WalkSat

algorithm originally proposed by Selman, Kautz, and Cohen (1994).

2.1 Syntax and semantics

A propositional formula is a syntactic expression built from a set of atomic predi-

cates —also sometimes known as atomic propositions, boolean variables, or simply

predicates— which we denote by lowercase letters: p, q, . . . . The most simple

propositional formula is an expression known as an atom which merely consists
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∧ false true
false false false
true false true

∨ false true
false false true
true true true

¬
false true
true false

Figure 2.1: Truth tables of propositional logic

of a single atomic predicate. More complex formulae are then built from atoms

using the connectives of truth (true , >), falsity (false , ⊥), conjunction (and ,

∧), disjunction (or , ∨), and negation (not , ¬). Other connectives such as im-

plication and equivalence are defined in terms of those already introduced, e.g.

F → G ≡ ¬F ∨ G and F ↔ G ≡ (F → G) ∧ (G→ F ). A set of formulae will

be also often referred to as a set of constraints. The size of a formula, or set of

formulae, is counted as the number of symbols in it.

A literal is either an atom p, a literal with a positive phase, or a negated atom

of the form ¬p, a literal with negative phase. If l is a literal, we will also use the

notation l̃ to denote its complement, i.e. l̃ = ¬p if l = p and l̃ = p if l = ¬p.
In the propositional case, we will also often use x and y to represent arbitrary

literals. A clause is a disjunction of literals and a clausal formula is a conjunction

of clauses. For simplicity a clausal formula is sometimes abstracted as a set of

clauses, and a clause as a set of literals.

A clause containing a single literal is known as a unit clause, also sometimes

referred to as a fact. A clause without any literals at all, the empty clause, is also

legitimate and represents a contradiction. We will often say that a propositional

formula is in clausal normal form (CNF) or, as it is also commonly know, in

conjunctive normal form if the formula is a clausal formula.

One way to define the semantics of propositional formulae is through the

notion of truth assignments. A truth assignment is simply a function that maps

every atomic predicate to one of the truth values of true or false. The evaluation

of truth assignments is then extended to more complex expressions by using the

truth tables of Figure 2.1; moreover ⊥ always evaluates to false, and > to true.

We then say that a formula is satisfiable if there is a truth assignment, some-

times also called a solution or a model of the formula, that makes the formula

evaluate to true; if there is no such assignment we say that the formula is unsat-

isfiable. Given a pair of formulae we also say that they are equivalent if they have

exactly the same models. And they are equisatisfiable if one of them is satisfiable

if and only if the other is.
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The propositional satisfiability problem (SAT) asks, given a propositional for-

mula as input, whether the formula is satisfiable or not. The tautology problem

is the related problem that asks whether a formula is a tautology, i.e. it evaluates

to true under all possible truth assignments. Notice that satisfiability checking

and the tautology problem are duals: a formula is a tautology if and only if its

negation is unsatisfiable. Also note that the empty clause is unsatisfiable; while a

trivial clause, containing a complementary pair of literals x and x̃, is a tautology.

Alternatively, the semantics of propositional logic can be defined in terms of

logical calculi and inference rules. Although many inference systems have been

defined for propositional logic (see e.g. Mendelson, 1987), we will describe the

inference rule of resolution which is quite relevant to the methods and techniques

described in this and later chapters. In the context of propositional logic the

inference rule of resolution has the form

C ∨ p ¬p ∨D
C ∨D

which allows to deduce, from a pair of clauses sharing a complementary literal, a

new clause which is the union of the two after removing these literals on which

the clauses were resolved. Alternatively, we will also sometimes use ⊗ as the

operator for resolution and instead write

(C ∨ p)⊗ (¬p ∨D) = (C ∨D) .

The logical calculi of propositional resolution simply takes as input a set of

clauses, applies the resolution rule among pairs of clauses in the set and incre-

menting it by adding the result of each such inference. This process is iterated

until either: the empty clause is generated, in which case the original set of clauses

is unsatisfiable; or no more resolution inferences are possible, we say then that

the set has been saturated and, from theoretical results, it follows that the set

must be satisfiable.

Additional inferences and simplifications, such as subsumption explained later

in Section 2.3 are possible, but this is the most basic idea behind propositional

resolution theorem proving. Also note, moreover, that this calculus only works

with formulae written in clausal normal form. Nevertheless, as we are about to

see, this does not impose any significant restriction in practise.
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⊥ ∧ F ⇒ ⊥ ⊥∨ F ⇒ F ¬⊥ ⇒ > (2.1)

> ∧ F ⇒ F > ∨ F ⇒ > ¬> ⇒ ⊥ (2.2)

¬(F ∧G) ⇒ ¬F ∨ ¬G ¬(F ∨G) ⇒ ¬F ∧ ¬G ¬¬F ⇒ F (2.3)

Figure 2.2: Rewrite rules for negation normal form translation

2.2 Normal forms

For formulae in clausal normal form, it is very easy to solve the tautology problem

(a formula is a tautology iff it contains only trivial clauses, and this can be checked

in linear time). On the other hand the satisfiability problem of clausal formulae

is still NP-complete (Cook, 1971). As a consequence it is very unlikely to find an

efficient (polynomial) algorithm to translate arbitrary propositional formulae into

an equivalent clausal form representation (since otherwise it would be possible to

translate the negation of the formula into clausal form and then solve the easier

tautology problem).

Using a well known translation, which works by applying distributivity laws

among logical connectives, it is possible to translate an arbitrary propositional

formula into an equivalent clausal form. The size of the resulting formula is,

however, exponential on the size of its input. In order to more easily describe this

and other clausal form translations, we will first introduce another normal form

and its corresponding translation in order to simplify the treatment of negation.

Definition 2.1. A formula F is in negation normal form, or simply NNF, if

the formula is either >, or ⊥, or is built from literals using the connectives of

conjunction and disjunction only. The negation connective, in particular, is only

allowed to appear in front of an atom to form a literal.

A formula F is also called a negation normal form of a formula G, if F is

equivalent to G and F is in negation normal form. �

The following algorithm allows one to translate any arbitrary propositional

formula into an equivalent negation normal form. The translation moreover, is

quite simple and can be performed in linear time.

Algorithm 2.1 (Negation normal form translation). The rewrite rule system

on formulae of Figure 2.2 gives an algorithm to translate arbitrary propositional

formulae into negation normal form. Given an input formula, the algorithm
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simply applies the rewrite rules in a nondeterministic manner until no rule can

be applied anymore.

It is easy to verify that the rewriting rule system is terminating and, moreover,

that the resulting expression is indeed a negation normal form of the input. Rules

(2.1–2.2) in particular, take care of evaluating the effect of the truth and falsity

connectives, while rules (2.3) push negation inwards until the level of atoms is

reached. Also note that, after applying this translation, if either the > or ⊥
connectives remain in the formula, then the whole formula has been simplified

to this single connective. Since the > and ⊥ do only appear in these two trivial

cases, in the following we will assume that formulae do not contain any of these

connectives.

We can now introduce the standard clausal form translation, which is able to

translate any formula in negation normal form to an equivalent clausal formula.

This translation, however, is not very efficient and causes, in the general case, an

exponential blowup in the size of the resulting formula.

Algorithm 2.2 (Standard clausal form translation). Given an input formula in

negation normal form, the algorithm simply applies the rewrite rule

(A1 ∧ · · · ∧ Am) ∨B1 ∨ · · · ∨Bn ⇒ (A1 ∨B1 ∨ · · · ∨Bn) ∧
... ∧

(Am ∨B1 ∨ · · · ∨Bn) ,

in a nondeterministic manner until it cannot be further applied.

Again, it is easy to verify that the algorithm is terminating and, moreover,

that the resulting formula is in clausal normal form. In practise, however, this

translation is not very useful because of the exponential increase in size that

it yields. Nevertheless, using an alternative translation due to Tseitin (1968),

it is possible to reduce a propositional formula into an equisatisfiable clausal

representation. Note that the resulting formula is no longer equivalent to its

input, but only satisfiable if and only if the original formula is.

This translation is linear, both in time and in the size of its output, and is

achieved by introducing new atoms that are used to replace nested subformulae.

We will now give a simplified version of Tseitin’s translation which implements the

polarity optimisations of Plaisted and Greenbaum (1986), which take into account
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how subformulae are influenced under the scope of the negation connective, simply

by assuming that the formula is already given in negation normal form.

Algorithm 2.3 (Tseitin’s clausal form translation). Let G be a formula in nega-

tion normal form. For each subformula F introduce a new predicate symbol pF .

Then let ∆G be a set containing, for each subformula F = A ∧ B, the pair of

constraints

pF → pA

pF → pB

and, for each subformula F = A ∨B, the constraint

pF → pA ∨ pB .

The algorithm produces as output the set of constraints ∆G ∪ {pG}.

The following theorem, which is easy to prove using the same original ideas

from Tseitin (1968), establishes the correctness of this translation.

Theorem 2.1. Let F be formula in negation normal form. The formula F and

the set of constraints ∆F ∪ {pF} are equisatisfiable.

Motivated by this result, the study of the satisfiability problem and the imple-

mentation of solvers have been traditionally restricted to propositional formulae

in clausal normal form. The use of a simple and uniform representation for a

broad class of problems provided a favourable working framework for researchers

to develop ideas and implementations. In fact, the design of an effective data

structure to store and operate with formulae in a clausal form representation

(Moskewicz et al., 2001) is one of the crucial elements that allows modern solvers

to achieve their levels of efficiency.

Recently, however, researchers have started to understand the shortcomings

of using such reduced normal forms. Foremost, problems are usually expressed

in a much more natural and concise way in higher level languages: problems in

scheduling and logistics are usually expressed in specialised planning languages

(e.g. PDDL, STRIPS); models for verifying hardware and software systems are

also described in particularly designed languages (e.g. Verilog HDL, SMV); even

problems at lower electronic design levels involve circuits with a rich set of gates

and components (e.g. xor , bit counts and inequalities) that can, furthermore, be

arbitrarily nested and wired.
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When these high level descriptions are translated into clausal forms, a lot of

valuable information from the original problem is lost. Problems arising from real-

world applications often have a great amount of structure but, when translated

to a clausal formula, complex relationships between objects and variables in the

problem are just chopped down and buried into a large set of clauses. Moreover,

symmetries that may be explicit in the problem description, and that could be

exploited during the search for a solution, end up diluted in the translated version.

There had been many efforts to take advantage of the symmetries that are

still implicitly present in clausal encodings. Crawford (1992) provided, by showing

that the symmetry detection problem is equivalent to graph isomorphism, one of

the first important results of symmetry in reasoning. Several techniques have also

been proposed that employ this symmetry information to aid in the search for

solutions (Crawford et al., 1996; Aloul et al., 2003; Sabharwal et al., 2003).

An alternative approach that has been recently explored is to design solvers

that are able to directly handle more descriptive languages (such as circuit en-

codings) where both the symmetries and structure information are available at

first hand (Thiffault et al., 2004; Sabharwal, 2005). While this line of research is

still at early development stages, and the systems implemented have not reached

the maturity of modern clausal solvers, the results obtained so far suggest that

important progress can be made by finding adequate languages and encodings to

express the kind of problems that we want are interested in solving.

2.3 Preprocessing techniques

Before applying one of the main algorithms to decide satisfiability, a formula is

often preprocessed in an attempt to simplify it and possibly reduce the search

space that the satisfiability checking algorithm will have to explore. The most

simple preprocessing technique is to reduce a formula so that it contains no trivial

clauses and that each atomic predicate appears at most once in each clause. It

is also possible to immediately declare a formula as unsatisfiable if it happens to

contain the empty clause.

The pure literal rule is another preprocessing step very commonly performed.

If a literal appears in the formula in only one phase (i.e. always positive or always

negative), then it is possible to assign it the truth value that will make it satisfy

all the clauses where it occurs, effectively allowing us to remove all those clauses.
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This rule was originally proposed by Davis et al. (1962) to be applied in the

main loop of the DLL algorithm, but the cost associated with keeping track of

the required literal counts was found to overcome any gains provided by the

simplification (see e.g. Mitchell et al., 1992; Mitchell, 2005). One also has to

note that after applying this rule, the resulting formula is no longer equivalent,

but just equisatisfiable, to the original one. This is particularly important in the

context of incremental satisfiability solving, where new clauses added later might

invalidate previous applications of this rule.

Also proposed by Davis et al. (1962), and still the main operation during the

actual solving process, is the unit literal rule. This rule can be applied when

the formula contains a clause with a single literal: a unit clause. Since the only

way to satisfy such clause is to set the adequate value to make that literal true,

it is possible to remove all clauses where the literal occurs (which are already

satisfied) and remove every occurrence of its complement (which are set to false

and do not contribute to satisfy any clause).

After an application of the unit literal rule, of course, new unit clauses can be

generated allowing the process to iterate and perform even further simplifications.

This iterated propagation of unit clauses is know as unit propagation and, as

detailed in a later section, is one of the core operations of the DLL algorithm

itself. Another special case that might occur when performing unit propagation

is that an empty clause is produced, this situation is known as a conflict. If a

conflict occurs during the preprocessing stage then the instance is unsatisfiable.

Many other ideas for formula preprocessing have been proposed in the liter-

ature (Drake et al., 2002; Lynce and Marques Silva, 2003; Bacchus and Winter,

2003; Brafman, 2004), but only a few of them have actually been successful.

One of the principal challenges, which may seem reasonable, is to achieve a good

balance between the time that is spent in preprocessing and the real benefits

provided by the simplification. But much more puzzling is the fact that shorter

and simpler formulae are not always the ones which are easier to solve (Lynce

and Marques Silva, 2001).

Sometimes having redundant clauses (i.e. clauses that follow as a logical con-

sequence of the rest of the formula) are helpful to more quickly discover conflicts

and prune the search space. It is not unusual, in fact, to find instances that be-

come harder after being treated with a preprocessor. Moreover, techniques that

“enrich” a formula by adding redundant clauses have been sometimes found use-
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ful (see e.g. Lynce and Marques Silva, 2003). The most notable example of the

successful application of this idea is clause learning discussed in a later subsection.

We do will describe two of the preprocessing techniques that have shown

the most promising results in practise. Bacchus and Winter (2003) propose the

use of a particular form of hyper-resolution to discover binary clauses. From a

single clause (x1 ∨ · · · ∨ xn) and n − 1 binary clauses (y ∨ x̃1), . . . , (y ∨ x̃n−1),

the HypBinRes rule allows to derive the binary clause (y ∨ xn); note that this is

equivalent to n− 1 applications of simple resolution.

Binary clauses are important because they encode simple relationships be-

tween pairs of literals, recall that the formula x→ y is equivalent to the clause

(x̃∨ y). By implicitly computing the transitive closure of the binary implications

it is possible to discover equivalences (i.e. x→ y and y → x) or new facts (i.e.

if x→ y and x̃→ y then it is possible to derive the unit y). In the former, all

occurrences of one of the literals can be replaced with the other; in the later, the

new fact allows the application of unit propagation.

Bacchus and Winter also showed that an efficient implementation of an algo-

rithm to compute the HypBinRes closure of clausal formulae is possible by using

specialised versions of graph traversal algorithms. One of the key observations

made is that HypBinRes can be simulated by asserting each literal in turns and

then applying unit propagation. This follows since if a literal y is derived when

the fact x is added to a given formula, what we actually prove is that x→ y is a

logical consequence of the formula.

In a more recent and notably successful approach, Eén and Biere (2005) pro-

posed new preprocessing ideas based on resolution. The effectiveness of these

ideas has been empirically demonstrated in the SatELite preprocessor which,

in combination with the MiniSat solver (Eén and Sörensson, 2005), won all

three industrial categories of the SAT 2005 competition (Le Berre and Simon,

2005). The preprocessor combines four basic reductions: predicate elimination,

subsumption, self-subsumption and definitional subsumption.

The principle of predicate elimination, also known as variable elimination,

dates back to the first algorithm for satisfiability from Davis and Putnam (1960).

Given a clausal formula let Sp be the set of clauses that contain the atom p and

S¬p the clauses containing ¬p. It is possible to apply pairwise resolution between

each clause in Sp and S¬p to obtain a new set of clauses S ′, and then replace all

the original clauses containing either p or ¬p with S ′ thus effectively removing
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the predicate p from the formula.

The original algorithm of Davis and Putnam iteratively applies predicate elim-

ination until all atomic predicates have been eliminated. But this was found to

cause a dramatic increase in the size of the formula, requiring an exponential

amount of space to solve the problem. However, when predicate elimination is

applied in a more restricted manner, it is possible to obtain significant reduc-

tions as observed in the NiVER solver (Subbarayan and Pradhan, 2004), where

predicate elimination is applied only if it produces a reduction in the number of

clauses. It has been observed that, mainly in instances from real-world applica-

tions, this is often very effective since the resolution process tends to generate

many trivial or subsumed clauses.

A clause C1 is said to subsume another C2, if it is the case that all the

literals in C1 also occur in C2 (i.e. C1 ⊆ C2). The subsumed clause, C2 in

this case, is redundant and can be removed from the formula. Detection of

subsumed clauses may seem very simple, but it is costly enough so that performing

it inside the main loop of a SAT algorithm becomes unfeasible. As a preprocessing

step subsumption can be efficiently computed using a simple signature-based

algorithm (Ramakrishnan et al., 2001).

Each clause in the formula is assigned a signature that abstracts the set of

literals that it contains. A hash function maps each literal into a number in some

short domain such as the set {0, . . . , 63}, and then the signature of a clause is a

64-bit number where the bits corresponding to literals appearing in the clause are

set to 1. This allows to perform a test to quickly discard many cases of pairs of

clauses where subsumption is not applicable; a complete (expensive) subset test

is only required if one of the signatures is a subset of the other.

Self-subsumption occurs when a clause C1 almost subsumes another C2; in

the sense that all the literals in C1 except for one, say l, are in C2 and, more-

over, the literal l̃ also occurs in C2. Applying resolution between C1 and C2

will produce a clause C ′
2 that contains all literals in C2 but l̃. Now, notice that

the resulting clause C ′
2 subsumes C2 which becomes redundant. Effectively, one

can simply remove the literal l̃ in C2 when an instance of self-subsumption is

detected. The procedure already described to detect subsumed clauses is also

useful to implement self-subsumption in an efficient way (Eén and Biere, 2005).

Finally definitional subsumption tries to exploit the fact that many typical

satisfiability instances, particularly those which come from circuit descriptions
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encoded with Tseitin’s translation (1968), contain implicit encodings of primitive

logical gates (and , or). The groups of clauses that define each gate are extracted

using graph methods (Ostrowski et al., 2002); and then the atom that represents

the output of the gate is resolved using predicate elimination. Exploiting the fact

that this atom is functionally dependent on the inputs of the gate, some of the

resolved clauses become redundant. This increases the chances that predicate

elimination does indeed reduce the total number of clauses in the formula and

that the effects of the technique are beneficial (Eén and Biere, 2005).

After any of these preprocessing techniques have been applied, one now has

to apply some algorithm to actually solve the core of the propositional satisfia-

bility problem. The following two sections explore some of the most successful

approaches that have been proposed in the context of, respectively, complete and

incomplete decision procedures.

2.4 The Davis-Logemann-Loveland algorithm

Although one of the earliest procedures for tautology checking, which is the dual

of the satisfiability problem, is the iterated consensus by Quine (1952); the credit

for designing the first satisfiability algorithm is often attributed to Davis and

Putnam (1960). This is a complete algorithm which takes as input a clausal

formula and iteratively applies resolution, in the form of predicate elimination,

until all atomic predicates have been removed from the formula. If an empty

clause is produced after the elimination of an atomic predicate then the instance

is unsatisfiable; otherwise the process continues until no more clauses remain in

the formula in which case it is satisfiable. The problem with this approach is that

resolution in general may cause an exponential growth of the formula during the

solving process, thus rendering it unfeasible except for formulae with very few

atomic predicates.

In order to overcome this issue; Davis, Logemann, and Loveland (1962) pro-

posed an improvement over the previous algorithm that replaces the resolution

steps with search. In its most simple presentation it takes the form of a depth

first search backtracking algorithm over the space of truth assignments. On each

step an atomic predicate in the formula is selected and assigned a value; the for-

mula is simplified using this value and if it turns to be satisfiable —invoking the

same procedure recursively— a solution is found and the algorithm terminates;
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otherwise the other possible value for that predicate is tried in another recursive

call; if both attempts fail then the formula is unsatisfiable.

Algorithm 2.4 outlines this procedure, which is commonly referred to as the

DLL algorithm. The symbol F |l is used to denote the loosely defined expression:

the formula F after being simplified by adding the fact l. We will describe in a

moment some possible realisations of this required simplification. Also note that

the algorithm has to decide on which atomic predicate to branch at each recursive

step, this is the matter of discussion in a later subsection on decision heuristics.

The number of decisions required to solve an instance of the SAT problem is

usually taken as a measure of the search space explored by the algorithm.

Algorithm 2.4 The Davis-Logemann-Loveland algorithm

procedure DLL(F )
if F contains no clauses return “Satisfiable”
if F contains an empty clause return “Unsatisfiable”
pick a literal l whose atomic predicate appears in F . decision
if DLL(F |l) returns “Satisfiable” then

return “Satisfiable”
else

return DLL(F |l̃)
end if

end procedure

The search tree for an execution of the DLL algorithm has a node for each

call to the procedure, and edges from each node to the two nodes representing

the performed recursive calls. The decision level of a node corresponds to its

depth in the tree. Although it may seem that the algorithm is almost, but not

quite, entirely unlike resolution; it turns out that the execution tree implicitly

describes a resolution-style proof when the formula is unsatisfiable (see e.g. Beame

et al., 2004). Moreover, by taking advantage of this feature, it is possible to

develop systems that are able of generating proof certificates which, in turn, can

be systematically verified by independent proof checkers (Zhang and Malik, 2003).

In the original description of Davis et al. (1962), it is suggested to apply

the unit literal and pure literal rules to simplify the formula at each node of

the execution. However, the costs associated with keeping track of the required

information to detect pure literals were found to overcome any benefits provided

by the simplification. In fact, the use of clever decision heuristics often diminishes

the effectiveness of applying this rule.
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Over the years, many other simplification and reasoning techniques have been

proposed (van Gelder, 2001; Bacchus, 2002; Li, 2003; Heule and van Maaren,

2004). And although some of this approaches have been successfully applied in

particular domains, the leading satisfiability solvers are still those who generally

perform unit propagation only. Elaborated reasoning methods are often helpful

to reduce the total search space explored, but modern implementation techniques

—the matter of a later subsection on unit propagation— allow to very quickly

apply unit propagation and outperform systems equipped with more powerful

reasoning mechanisms. These findings suggest two important lessons: first, that

efficient implementations should be based on cheap and easy to maintain methods;

but, second, that the application of more expensive reasoning at appropriate times

(e.g. close to the beginning of the search) is often favourable to reduce the required

search space to explore.

2.4.1 Unit propagation

By profiling competitive SAT solvers it was observed that about 90% of the run

time is spent in unit propagation (Moskewicz et al., 2001). One of the most

significant advances in the theory and applications of satisfiability was to realise

this fact and to propose specialised algorithms that efficiently perform this opera-

tion. A key point to observe is that a suitable technique should not only allow to

simplify the formula, but also provide efficient means to ‘undo’ the simplification

when the algorithm backtracks and removes some decisions.

To restate the problem in consideration, when a unit clause (l) is found in the

formula —either added as a decision of the algorithm, or implied as a consequence

of unit propagation itself— we have to remove: all clauses where the literal l

occurs, and all occurrences of l̃ in other clauses. The procedure should detect

when new unit clauses are produced and iterate; or immediately stop and report

a conflict if an empty clause is generated. In literature this method is sometimes

referred to as boolean constraint propagation (BCP).

Early implementations (Crawford and Auton, 1993) kept counters indicating

the number of unassigned literals remaining in each clause and, for each literal,

the list of clauses where it occurs. When a literal is set or unset, all the counters

of clauses containing the literal (or its negation) are updated accordingly (clauses

that become satisfied are assigned a special undefined value and ignored). When

the counter of a clause reaches 1, the algorithm searches for the unassigned literal
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and adds it to a queue of literals still to propagate. When a counter reaches 0,

a conflict is detected and the procedure stops. This counter-based approach is

very simple to understand and implement; but it becomes extremely inefficient,

particularly for large formulae, to visit all clauses in order to keep the values of

the counters updated.

Zhang and Stickel (1996) were the first to observe that it was unnecessary to

visit all clauses when trying to detect unary clauses. If a clause has more than two

unassigned literals then a single application of unit propagation will not produce

a new unit clause. In their implementation they keep a pointer to the first and the

last unassigned literals of each clause. When both pointers coincide, a unit literal

is detected. This technique improves from the previous one since a clause has

to be visited only when one of its boundary literals gets (un)assigned. Satisfied

clauses are not removed, but lazily detected when performing propagations (i.e.

when a boundary literal hits a literal already assigned true).

Moskewicz et al. (2001) improve even further on this idea by noticing that it

is not even necessary to maintain an order between the pointers keeping track of

the two unassigned literals. The two watched literal scheme simply maintains the

property that two different unassigned literals are watched on each clause. When

a watched literal gets assigned to false, the pointer simply moves freely looking for

another unassigned literal to watch; if none is found a new unit clause is detected.

The improvement comes from the fact that, upon backtracking, nothing has to

be done! The property that the two watched literals are unassigned is already

satisfied. Algorithm 2.5 presents in a little more detail the procedure to find a

new watch when the literal x gets assigned to false. Again, satisfied clauses are

not removed but lazily detected and ignored.

2.4.2 Clause learning

It the last ten years there were two major breakthroughs that enabled systems to

go from solving problems with few hundreds of predicates to tens of thousands.

One of those breakthroughs is the two watched literal scheme, the other is clause

learning. The idea originally emerged in the area of constraint satisfaction (see

e.g. Kumar, 1992) and was first introduced into the context of satisfiability by Ba-

yardo and Schrag (1997) in rel sat, and by Marques Silva and Sakallah (1996a)

in Grasp. Clause learning also enables what has been called in literature as

conflict directed backjumping, intelligent or non-chronological backtracking; as
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Algorithm 2.5 Find new literal to watch

procedure FindNewWatch(x)
for each literal y in the clause, y 6= x do

if y is set to true then
return . do nothing, satisfied clause

else if y is watched then
w ← y . w is the other watched literal

else if y is unassigned then
move watch from x to y . found a new literal to watch
return

end if
end for
add w to the queue for unit propagation . unit clause detected

. if w̃ is already in the queue, this detects a conflict
end procedure

well as many other combinations of the same sort of expressions.

The basic idea is fairly simple. At each step of the DLL algorithm a literal

is set to true, i.e. decided, and the consequences of this decision are propagated.

The process iterates until a conflict is found. At this point one may collect the set

of decision literals, say {x1, . . . , xd}, that were actually responsible for generating

the empty clause (note that the last decision literal, say xd, must be in that set).

Now we know that one of those decisions was wrong or, in other words, that a

solution should also satisfy the clause (x̃1∨· · ·∨ x̃d). Such clause, called a conflict

clause, can be added to the formula, i.e. ‘learnt’, in order to avoid performing a

similar search again that will finish in the same conflict.

It might be the case, moreover, that recent decisions (except from xd) did not

participate in the generation of this conflict. Then, it is possible to directly jump

to the last relevant decision level and assert x̃d (now as an implied fact, not a

decision) while pruning a large part of the search space. In order to accommodate

for this facilities the original DLL algorithm has to be modified, Algorithm 2.6

shows a common formulation which is the base of most modern solvers.

The algorithm is more easily described (and implemented!) in an iterative

rather that recursive form. As in the original DLL, an unassigned literal is se-

lected and the consequences of assigning it to true are computed using Unit-

Propagate (note however that additional reasoning, and not exclusively unit

propagation, may be included at this point). If no conflict occurs then the algo-

rithm continues performing more decisions and adding their implications. When
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Algorithm 2.6 Conflict directed backjumping

procedure CBJ
level ← 0
while there are unassigned literals do

level ← level + 1
pick an unassigned literal x . decision
add x to the queue for unit propagation
while UnitPropagate returns “Conflict” do . deduction

if level = 0 return “Unsatisfiable”
C ← derived conflict clause . conflict analysis
y ← asserting literal in C
level ← level where y is asserted
undo assignments and decisions until level . backjumping
add the clause C to the formula
add y to the queue for unit propagation

end while
end while
return “Satisfiable”

end procedure

a conflict occurs a special procedure, called conflict analysis, is invoked to derive

a conflict clause. Such clause must contain the negation of: exactly one literal

from the current decision level, known as the asserting literal, and zero or more

literals from previous levels. The the second highest decision level in the clause

(or 0 if the clause contains only one literal) is the asserting level of the clause.

One can backtrack to this level (where the conflict clause becomes unit), learn

the conflict clause, assert the new literal and continue propagation.

Example 2.1. An example taken from Nieuwenhuis et al. (2004) and shown

in Figure 2.3, serves to clarify these ideas and introduce the computation of

conflict clauses. To improve readability atomic predicates are denoted by natural

numbers and decision literals are written in bold. Literals that are removed as a

consequence of the current assignment are cancelled out, and the reason of each

implied literal is underlined.

The reason for an implied literal, also called its antecedent, is the clause that

became unit and justified its addition to the current assignment. Decision literals

have no reasons, since they are arbitrarily assigned by the algorithm. The exe-

cution proceeds by simple decision and propagation of literals until step 7 when,

since both literals 6̃ and 6 have been implied, a conflict is detected. In this simple
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1: 1̃ ∨ 2, 3̃ ∨ 4, 5̃ ∨ 6̃, 6 ∨ 5̃ ∨ 2̃ 1

2: ��̃1 ∨ 2, 3̃ ∨ 4, 5̃ ∨ 6̃, 6 ∨ 5̃ ∨ 2̃ 1, 2

3: ��̃1 ∨ 2, 3̃ ∨ 4, 5̃ ∨ 6̃, 6 ∨ 5̃ ∨ ��̃2 1, 2,3

4: ��̃1 ∨ 2, ��̃3 ∨ 4, 5̃ ∨ 6̃, 6 ∨ 5̃ ∨ ��̃2 1, 2,3, 4

5: ��̃1 ∨ 2, ��̃3 ∨ 4, 5̃ ∨ 6̃, 6 ∨ 5̃ ∨ ��̃2 1, 2,3, 4,5

6: ��̃1 ∨ 2, ��̃3 ∨ 4, ��̃5 ∨ 6̃, 6 ∨ 5̃ ∨ ��̃2 1, 2,3, 4,5, 6̃

7: ��̃1 ∨ 2, ��̃3 ∨ 4, ��̃5 ∨ 6̃, 6 ∨ ��̃5 ∨ ��̃2 1, 2,3, 4,5, 6̃, 6 (	)

8: ��̃1 ∨ 2, 3̃ ∨ 4, 5̃ ∨ 6̃, 6 ∨ 5̃ ∨ ��̃2, ��̃1 ∨ 5̃ 1, 2, 5̃

Figure 2.3: Example of conflict learning in DLL

example it is easy to observe that the assignment of the decision literal 3 has no

relevance to the conflict, and thus a valid conflict clause is (1̃ ∨ 5̃). A bit more

formally this formula is derived by a sequence of resolution operations between

the antecedents of the conflicting literals:

(5̃ ∨ 6̃)⊗ (6 ∨ 5̃ ∨ 2̃)

↓
(5̃ ∨ 2̃)⊗ (1̃ ∨ 2)

↓
(1̃ ∨ 5̃)

This conflict clause has the asserting literal 5̃, which is asserted at level 1 (i.e. it

only depends on decisions made up to that level). The algorithm would continue

by adding the conflict clause to the formula (shown in step 8) and propagate

the literal just asserted. Also note that this literal does have an antecedent, the

conflict clause, that can be used later in the search to compute more conflict

clauses.

Observe that, in the previous example, the clause (5̃∨ 2̃) is also a valid conflict

clause. In fact, the only requirement for a conflict clause is that it contains exactly

one literal from the current decision level. Algorithm 2.7 shows the description

of a very general procedure to compute conflict clauses. The symbol Ax is used

to denote the antecedent of a literal x.

A number of learning schemes have been proposed in the literature being

supported by several different intuitions (Marques Silva and Sakallah, 1996b;

Bayardo and Schrag, 1997; Zhang et al., 2001). The work of Zhang et al., in

particular, provides an experimental comparison of various learning schemes. The



2.4. The Davis-Logemann-Loveland algorithm 41

Algorithm 2.7 Conflict analysis algorithm

procedure ConflictAnalysis(x)
C ← Ax ⊗ Ax̃
while stop criterion not met do

pick an implied literal w in C
C ← C ⊗ Aw̃
add the clause C to the formula . this step is optional

end while
y ← literal from current level in C
level ← max { level(x) | x ∈ C \ {y}}
return C, y, level

end procedure

Scheme selects literals in until
First UIP current level first UIP found.
2nd UIP two highest levels first UIP of each level found.
3rd UIP three highest levels first UIP of each level found.
...

...
...

All UIP all decision levels first UIP of each level found.
Last UIP current level last UIP (decision literal) found.
Decision all decision levels only decision literals remain.

Table 2.1: Schemes for conflict analysis found in literature

proposed variations usually differ on the strategy to pick literals to resolve, the

particular stop criterion enforced and the number of intermediate clauses that

are added to the formula.

An important concept in the design of conflict analysis schemes is the unique

implication point (UIP). During the process described in Algorithm 2.7, a clause

is said to have a UIP at level l if there is exactly one literal in the clause from

that decision level. Note that the sole requirement for a conflict clause to allow

backjumping is to have an UIP from the current decision level. The simplest

conflict analysis strategy, known as First UIP, is to resolve literals from the

current level and stop as soon as the first UIP is found. Other possible strategies,

which were considered by Zhang et al. (2001), are listed in Table 2.1; Last UIP is

sometimes referred as the rel sat scheme since it was originally proposed and

implemented by Bayardo and Schrag (1997) in the rel sat solver.

Another proposed idea was to actually find the shortest possible conflict clause

from the chain of implications, this turns out to be equivalent to the vertex min-



42 C Chapter 2. Propositional logic

cut problem in graphs. Finally Grasp employs a technique similar to First

UIP, but where each intermediate clause in the resolution process is added to

the formula (the optional step in Algorithm 2.7). The experimental study of

Zhang et al. (2001) found First UIP to be the best learning strategy from those

examined, although no convincing reason or explanation for that has been given.

In his master’s thesis, Ryan (2004) observes that it is inappropriate to justify

the superiority of First UIP just because it is easier to compute. Even the cost

of All UIP is negligible compared to other operations such as unit propagation.

Moreover, in his own experiments and implementation, First UIP consistently

allows the solver to explore a much reduced search space compared to other

approaches. He suggests a possible correlation between the average number of

resolution steps required to derive conflict clauses (of which First UIP performs

the fewer) and the overall solver performance. He also indicates that sometimes

adding a few intermediate clauses is beneficial, but why and when this technique

works is still largely unclear.

Another key observation from Ryan (2004) is that the implementation details

of unit propagation and clause learning are very relevant to the actual perfor-

mance of each other. In particular different implementations of unit propagation

may select different antecedents for implied literals, resulting in different learnt

clauses and, ultimately, in completely different search behaviours. Implementa-

tions engineered to increase the chances of finding of short antecedents, may also

induce the generation of shorter and more useful conflict clauses.

Recently a further improvement for conflict analysis has been proposed by

Eén and Sörensson (2005) applying the self-subsumption rule, already described

in Section 2.3, to further simplify conflict clauses. This technique, called conflict

clause minimisation, essentially checks if some of the literals in the conflict clause

can be eliminated by applying self-subsumption with the implicants involved in

the resolution process. The success of this idea has been empirically demonstrated

in MiniSat at the SAT 2005 competition (Le Berre and Simon, 2005).

2.4.3 Clause database management

Clause learning is a crucial element in modern satisfiability solving that allows

systems to prune vast regions of search space. However, by adding a clause to

the formula each time a conflict is reached, and since the number of conflicts

to solve an instance can be exponentially large in the worst case, the memory
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requirements grow exponentially while the search proceeds. Unless some clauses

are eventually deleted, as the cost of unit propagation depends directly on the size

of the formula, the raw performance of the algorithm will also quickly degrade.

We end up in a situation where the satisfiability problem also becomes a

database management problem. Clauses have to be efficiently stored in memory

allowing fast access to the literals in them. Moreover, since clauses are added

and deleted on the fly, tasks such as garbage collection and explicit formula

simplification need to be periodically performed.

A number of deletion policies have been proposed and implemented: in Grasp

(Marques Silva and Sakallah, 1996a) large clauses are deleted as soon as they are

not required to justify the current assignment; in zChaff (Moskewicz et al., 2001)

conflict clauses that, upon backtracking, get about 100-200 unassigned literals

are deleted; siege (Ryan, 2004) augments the same technique by periodically

removing a random selection of clauses; BerkMin (Goldberg and Novikov, 2002)

deletes a fraction of clauses that are either too old or too large, and have not

participated actively in recent conflicts.

For the actual storage of the clause database, early implementations used

pointer heavy structures such as linked lists which allowed to efficiently perform

some database operations but were not very memory efficient. Most modern

solvers store the clause database in a large array with clauses delimited by sen-

tient values. This is not always a very flexible data structure but significantly

reduces the memory requirements. The use of a contiguous area of memory also

allows a more efficient utilisation of the processors’ cache (Zhang and Malik, 2002;

Mitchell, 2005).

Ryan (2004) goes even further by using only 21 bits to represent each literal so

that three of them —rather than two using the usual 32 bits— fit within a 64-bit

word. This, however, imposes a limitation on the number of atomic predicates

that the solver is able to handle and becomes a significant limitation for some

industrial applications.

Another important observation from Pilarski and Hu (2002) is that problem

instances, particularly those arising from electronic design, often contain a large

number of binary clauses. The use of a procedure such as the two watched literal

scheme to perform unit propagation on those clauses is evidently an overkill.

Following the same argument, Ryan (2004) proposes the use of specialised data

structures to manage clauses of length two and three.
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2.4.4 Decision heuristics

The Davis-Logemann-Loveland procedure, depicted in Algorithm 2.4, is nonde-

terministic in the sense that at each decision point it does not specify which

literal should be chosen. Any choice strategy will produce the correct result but,

as it was realised since the early days of satisfiability testing, different strategies

do lead to very different sizes of spaces to search. Thus, the design of effective

decision heuristics is crucial to achieve high levels of performance in a solver.

Most of the first heuristics (Jeroslow and Wang, 1990; Freeman, 1995) were

focused on trying to select the literal that will produce greater simplification after

unit propagation is applied. Several criterion were proposed to ‘measure’ the

amount of simplification using literal counts and other statistics of the clauses

in the formula. This kind of heuristics have, however, two main drawbacks:

first they are expensive to compute and maintain (e.g. updating literal counts at

each decision and backtracking point) and second it seems that, through these

syntactic statistics, it is not always possible to capture the ‘real structure’ of

the problem that is being processed. Moreover, in a comparative study from

Marques Silva (1999) in the context of the first clause learning algorithms, it was

found that simply selecting a literal at random is, in many cases, as good as the

other heuristics that have been proposed so far.

Another strategy, also presented originally by Freeman (1995), is to perform

the propagation of each literal and then choose the literal that effectively pro-

duced the greatest simplification of the formula. This technique, usually known

as lookahead, has been implemented in Satz (Li and Anbulagan, 1997) and more

recently in march eq (Heule et al., 2004) sometimes combined with other heuris-

tics to avoid performing propagation on all literals. Although very effective on a

few classes of structured and random problems, lookahead is often too expensive

and the reductions in search space do not always compensate its cost.

After clause learning was introduced, Moskewicz et al. (2001) were the first

authors to propose a heuristic that directly takes into account the information

gained in the search space that has been already explored. They also argued

that an effective decision strategy, since it is required at each node of the search

tree, should be inexpensive to compute. The heuristic named variable state in-

dependent decaying sum (VSIDS) is easily incorporated into the clause learning

framework, Algorithm 2.6, as follows:

• A counter, initialised to zero, is assigned to each literal.
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• At each conflict, increment the counters of literals in the conflict clause.

• Periodically, divide all counters by a constant.

When a decision has to be made, the literal with the highest counter is selected.

Since counters only have to be updated when a conflict occurs, the strategy has

very little overhead.

Some variations of the strategy have been proposed, such as initialising coun-

ters with literal counts and using combined scores (e.g. of x and x̃) when making

a decision. However a significant improvement was observed after a suggestion

from Goldberg and Novikov (2002), implemented in BerkMin, that involves in-

crementing the counters not only of literals in the conflict clause, but also from

all the clauses involved in the conflict analysis. The intuition is that this focuses

even more the search in trying to solve recently generated conflicts. In particular,

it was found useful to restrict the next decision to the literals in the most recent

unsatisfied conflict clause.

Variable move to front (VMTF) is another strategy, proposed by Ryan (2004)

in the siege solver, that maintains a list of predicates originally sorted according

to their number of occurrences in the formula. Each time a conflict occurs,

counters are incremented as in BerkMin and a random selection of predicates

from the conflict clause are moved to the front of the list. For decisions, the first

unassigned predicate from the list is selected, using the counters to decide which

value to assign it first. One of the most important qualities of this approach is

that it is extremely cheap to compute, since it avoids sorting scores to find the

highest one, and has also been found to be very competitive in practise.

2.4.5 Restart strategies

A common phenomenon observed while performing experiments and benchmark-

ing satisfiability solvers is that they suffer from a great variability on running

times. Sometimes even a small change in the order of atomic predicates for deci-

sion making is the difference between solving a problem in hours instead of a few

seconds. Gomes et al. (1997) proposed an explanation based on heavy-tailed dis-

tributions. In a few words many problems are usually solved within a reasonable

amount of time, but the probability of sometimes requiring an extraordinarily

large amount of time is not negligible.
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In order to eliminate this undesired behaviour, the authors proposed to add

some randomisation to the methods (e.g. in decision making) and restart the

search frequently, with the hope to find one of the short solutions for the problem.

This idea was effectively integrated later into zChaff (Moskewicz et al., 2001),

BerkMin (Goldberg and Novikov, 2002) and most other modern solvers.

The actual details depend on the implementation, but it is important to note

that clause learning solvers keep most (or at least some) of their learnt clauses

between restarts. So that the previous search effort is not lost, while allowing the

solver to escape from deep conflicts and start afresh searching into another space.

Another important detail to note is that when restarts and clause deletion

are used together, the completeness of the algorithm is lost. There is nothing to

guarantee that the solver will not keep learning and forgetting the same set of

clauses forever. On some solvers completeness is retained by making restarts less

frequently, or by keeping more and more clauses between restarts. The advantages

of doing any of these, however, are not very clear since, in practise, solvers usually

do not run long enough so that we can notice any difference.

As a concluding remark, restarts do not usually provide great speed gains or

increased search efficiency. But they do provide robustness to the solver, making

them capable of solving broader classes of instances compared to the same solver

without restarts.

2.5 Stochastic local search

The use of local search and other approximate methods to solve computation-

ally hard problems, can be traced back to algorithms for solving the travelling

salesman problem (Lin, 1965). After having some success in the constraint sat-

isfaction community (Minton et al., 1990) these ideas were later imported into

satisfiability independently in the works of Selman et al. (1992) and Gu (1992).

The early ideas were fairly simple, and the authors of these first works were

themselves astonished by their relative good performance. An initial truth assign-

ment is built by assigning truth values to each atomic predicate at random. The

procedure then counts the number of unsatisfied clauses and looks for a predicate

which when flipped, i.e. changed from true to false or vice versa, provides the

highest decrease of unsatisfied clauses. Such predicate is flipped and the process

iterated. If at some point the number of unsatisfied clauses reduces to zero, then
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a solution for the problem has been found.

This simple procedure has many visible inconveniences. It is easy, for example,

for the search to get stuck into some local minima and never find a solution.

To overcome this, the procedure is periodically restarted with different random

assignments with the hope of eventually finding a solution. More significantly,

since the algorithm has no memory about the search space already explored, it

cannot guarantee to always find a solution when one exists. Moreover, since it is

also unable to prove the unsatisfiability of a formula, this kind of algorithms are

often incomplete.

In certain applications, notably the case of planning, this might not be a

strong issue; since problems are likely to have solutions and the main concern is

just to find any of them. Moreover, since these simple ideas seemed to outperform

complete methods in finding satisfying assignments, a great amount of research

was spent on truly understanding them.

Algorithm 2.8 Stochastic local search algorithm

procedure SLS(F )
repeat MaxTries times

A← random truth assignment
if A satisfies F return “Satisfiable”
repeat MaxFlips times

pick an atomic predicate p in F . choose candidate
flip the value of p in A
if A satisfies F return “Satisfiable”

end repeat
end repeat
return “Don’t know”

end procedure

Algorithm 2.8 depicts the common structure of a stochastic local search satis-

fiability solver. Few research has been done into how to efficiently implement the

mechanics involved in this procedure (but see e.g. Fukunaga, 2004). Most of the

focus has been placed in designing and evaluating good heuristics to choose the

atomic predicate to flip. Some of the most popular and successful approaches are

presented in Algorithms 2.9 and 2.10. The following statistics are used in some

of those algorithms: Score(p) is the number of remaining unsatisfied clauses if

p is flipped; BreakCount(p) is the number of satisfied clauses that will become

unsatisfied if p is flipped; and TimeStamp(p) is the iteration step at which the
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predicate p was last flipped.

Algorithm 2.9 Heuristics to choose candidate in local search (Part 1)

procedure GSAT . Selman et al. (1992)
Best ← set of predicates that minimise Score
pick an atomic predicate in Best at random

end procedure

procedure GWSAT . Selman et al. (1994)
with probability p do

Best ← set of predicates occurring in unsatisfied clauses
otherwise

Best ← set of predicates that minimise Score
end with
pick a predicate in Best at random

end procedure

procedure WSAT . Selman et al. (1994)
choose an unsatisfied clause C at random
pick a predicate in C at random.

end procedure

procedure WalkSat/SKC . Selman et al. (1994)
choose an unsatisfied clause C at random
Best ← set of predicates in C that minimise BreakCount
if BreakCount of predicates in Best is zero then

pick a predicate in Best at random.
else

with probability p do
pick a predicate in Best at random

otherwise
pick a predicate in C at random

end with
end if

end procedure

Selman et al. (1994) evaluated many of the early heuristics and proposed the

original WalkSat approach, sometimes called the SKC variant after its authors,

though it was not completely described in that early paper (presumably the first

available description of the heuristic was the source code of the program itself).

Significant improvements were obtained by McAllester et al. (1997) in Novelty.

Strangely enough, Novelty was found to suffer from stagnation problems. Hoos
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Algorithm 2.10 Heuristics to choose candidate in local search (Part 2)

procedure Novelty . McAllester et al. (1997)
choose an unsatisfied clause C at random
sort the list of predicates in C by Score, break ties with TimeStamp
Best1 ← first predicate in the sorted list
Best2 ← second predicate in the sorted list
Young ← predicate in C with lower TimeStamp
if Best1 6= Young then

pick Best1
else

with probability p do
pick Best1

otherwise
pick Best2

end with
end if

end procedure

procedure Novelty+ . Hoos (1999)
choose an unsatisfied clause C at random
with probability wp do

pick a predicate in C at random
otherwise

continue using Novelty strategy . . .
end with

end procedure
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(1999) found a theoretical explanation for such behaviour, by introducing the

probabilistically approximately completeness (PAC), and showed that Novelty

does not have such property. Through a very simple fix, just by adding random

steps with some low probability, the PAC property is restored and the stagnation

problem solved. This is the base of the Novelty+ heuristic (Hoos, 1999).

Note that, common to most of these strategies, is the use of a parameter that

allows to ‘tune’ the amount of noise introduced in the search. It was observed,

however, that there is often no optimal tunning parameter; different families and

classes of problems were better solved with different parameter settings. This lead

Hoos (2002) into the idea of Adaptive Novelty+, an algorithm where those

tunning parameters are set and modified on the fly as the search proceeds. When

the search has been successfully reducing the number of unsatisfied clauses, the

parameters are tunned for more greediness ; in the other case, if no improvement

has been found for a number of steps, more noise is introduced allowing the search

to escape from local minima.

A final remark has to be made on the work of Tompkins and Hoos (2004),

who have provided a clean and extensible implementation of a general stochastic

local search solver UBCSAT. Together with particular instantiations of most of

the local search procedures ever published in literature, this project has served as

a solid framework for comparative experimentation between different approaches

and the rapid evaluation of new ideas.

2.6 Chapter summary

In this chapter we have introduced most of the background information about

propositional logic and the propositional satisfiability problem which is required

to more clearly understand the rest of this thesis. In doing so, we have also

aimed at providing a general picture of the state of the art in satisfiability solving

technologies and implementations.

After giving first a formal definition of the syntax and semantics of proposi-

tional logic, we have detailed some of the normal forms which are commonly used

to simplify the treatment of logical formulae both in theory and in practise. In

particular we introduced Tseitin’s translation which allows one to translate arbi-

trary propositional formulae into clausal normal form. In the following chapter

we will propose a few improvements on this translation, as well as study the effect
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that varieties of the translation have on the performance of satisfiability solvers.

We then gave a survey of preprocessing methods which simplify the struc-

ture of propositional formulae. And this was followed by a detailed account on

the theory and implementation techniques of the Davis-Logemann-Loveland al-

gorithm currently used by most complete modern solvers. Finally a brief survey

on stochastic local search methods, which are incomplete but also often more

effective on satisfiable problems, was also given.

The following chapter will now introduce some of our contributions in the con-

text of propositional logic. This includes a model to randomly generate propo-

sitional formulae which has a non-trivial structure and which are difficult for

existing systems to solve. Then, we also have a look at clausal form translation

methods, and propose a few ideas to improve on existing approaches.



Chapter 3

Encoding problems in

propositional logic

This chapter describes the main thesis contributions in the context of propo-

sitional logic and propositional satisfiability. It consists of two main sections,

the first one dealing with a model that we propose to randomly create non-

clausal propositional formulae. Most of this section was submitted and accepted

for publication at the Twentieth National Conference on Artificial Intelligence

(Navarro Pérez and Voronkov, 2005), and a summary was also presented at the

Workshop on Automated Reasoning 2005 (Navarro Pérez, 2005).

Our proposed model is useful to generate a large number of satisfiability prob-

lems which have a non-trivial structure and, at the same time, are particularly

challenging for existing satisfiability solving technology. This makes them par-

ticularly suitable for benchmarking the latest and new emerging systems which

try to exploit the structure information often present in problems derived from

real-world applications. Moreover, we also use existing clausal solvers to measure

the difficulty of the generated problems, while raising the question on the effect

that clausal form translations have on these generated problems.

The second section of this chapter summarises several of our research results

while studying encodings of problems in propositional logic. It includes first

an improved version of Tseitin’s translation which we devised while trying to

reduce the negative effects that the addition of many new predicates tends to

produce. This new translation, in particular, raises the idea that perhaps satis-

fiability solvers, able to deal with kinds of constraints more general than simple

clauses, might perhaps be better suited to exploit the structure and symmetries

52
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of problems. Early ideas on this direction were also presented at the Workshop

on Automated Reasoning 2006 (Navarro Pérez, 2006). We finally describe a brief

study on how properties of different translations and simplifications affect the

actual performance of solving procedures, in an attempt to figure out what con-

stitutes a good encoding for a problem in propositional logic.

3.1 Generating hard non-clausal problems

Randomly generated formulae have often been used as benchmarks to evaluate

the performance of satisfiability solving procedures. However it is important, as

already pointed out by Mitchell et al. (1992) as well as Mitchell and Levesque

(1996), to have a clear understanding of the distribution of such formulae in order

to avoid reaching incorrect conclusions from deceiving experimental results. An

algorithm may quickly solve several thousands of problems not because it is clever

or effective but, unfortunately, because of a poor sampling mechanism that has

a tendency to produce easy problems.

A model that has been recognised as being able to produce challenging bench-

marks for the satisfiability problem is random k-SAT. Formulae are produced by

randomly selecting clauses of length k built from a set with a given number of

atomic predicates. For one parameter of the model, namely the ratio between

the number of clauses and the number of predicates, an interesting pattern has

been observed: the sets of generated formulae exhibit a sharp transition between

almost all being satisfiable to almost none. Moreover, problems generated near

this critical region are hard to solve for all existing systems, while problems far

from it are either easy or only moderately hard. Researchers have shown a lot of

interest in the study of random k-SAT and related problems (such as determin-

ing bounds for the critical region) and, at the same time, hard random 3-SAT

formulae became a standard benchmark for testing satisfiability procedures.

The results of the SAT Competition (Le Berre and Simon, 2004), where new

and state-of-the-art solvers are tested against several benchmarks, have shown

that the best solvers on random 3-SAT are not necessarily the most effective on

real-world applications and vice versa. One of the possible explanations is that

such random formulae, which are just large sets of short and independent clauses,

are unable to simulate problems with some kind of structure.

This section introduces one of our first contributions, a generalisation of the
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random k-SAT model, that is useful to produce test formulae with non-trivial

structure. Our proposed fixed shape model is based on the idea of generating non-

clausal formulae, i.e. arbitrary propositional formulae not necessarily in clausal

normal form, and has several interesting features. First it produces a family

of instances controlled by a number of parameters, allowing to evaluate solvers

under different settings including critical conditions. Examples from real-world

applications usually do not allow this amount of control. At the same time, our

proposed model produces instances with some level of structure. We would like to

point out that our motivation is not to produce ‘harder’ problems, but to provide

non-clausal instances to serve as benchmarks for emerging solvers that try to

exploit problem structure or directly work with the non-clausal representation.

After the definition of our proposed model, we experimentally study the proba-

bility distribution of the generated formulae and observe interesting features such

as a sharp phase transition and the existence of hard problems in a critical region.

We also report the results on some experiments that we performed to compare the

performance of different state-of-the-art solvers in combination with two clausal

form translations. We address the question of how the choice of a translation af-

fects the properties of the generated problems and the performance of the solvers

when trying to solve them. Our results point out that no translation is always

better than the other, and that more research in this direction is needed.

3.1.1 The fixed clause-length model

In this section we present the fixed clause-length model, also known in literature

as random k-SAT, that is used to generate random clausal formulae. This model

has three parameters: the number of atomic predicates n, the number of clauses

m and the length k of the clauses to be produced. The parameter r = m/n, the

ratio of clauses to predicates, is often used instead of m to describe particular

instances of the model.

A formula is generated by selecting clauses uniformly at random from the set

of all clauses of length k. Slight variations of the model are found depending on

whether trivial clauses (with complementary or repeated literals) are allowed or

not. This, however, does not seem to affect the general behaviour of the distri-

bution. In extensive research on random k-SAT (Mitchell et al., 1992; Mitchell

and Levesque, 1996; Cook and Mitchell, 1997) two main features are frequently

pointed out:
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Sharp phase transition: For each k and n, the probability that a generated

formula is satisfiable changes, as the value of r increases, from almost 1 to almost

0 in a very narrow region. Moreover, as the value of n increases, the transition

seems to take place in a narrower area around some crossover point r∗. Friedgut

(1999) was able to show that, indeed, the size of the critical region shrinks as n

increases. His theoretical result, however, does not give any clues about the value

of r∗, or even if such a value should actually exist. For the case of random 3-SAT,

experimental evidence suggests a value near 4.25. Bounds for the crossover region

are also known: 3.52 < r∗ < 4.506 (Kaporis et al., 2003; Dubois et al., 2000).

The easy-hard-easy pattern: The difficulty of the generated problems (usu-

ally measured as the number of branches explored by a DLL-based algorithm)

exhibits a pattern that goes from very easy, for small values of r, to very hard,

when r enters the phase transition, to easy (or moderately hard) when r becomes

large. These phenomena is usually explained by the fact that, for low values of r,

a formula with few clauses is under-constrained and very easy to satisfy. On the

other hand, for large r, the formula is over-constrained and a complete satisfiabil-

ity checking procedure can quickly find contradictions to finish the search. The

hardest problems appear in the transition region where there are just enough

clauses to make the problem potentially unsatisfiable, but not too many to make

it easy for a solver to determine. The difficulty of a particular distribution of

formulae clearly depends on the procedure used to solve it, but several authors

have conjectured that this general pattern will hold for any reasonable complete

method (Cook and Mitchell, 1997).

3.1.2 The fixed shape model

Our proposed model is closely related to the fixed clause-length model intro-

duced in the previous section. We follow the same idea to go from under- to

over-constrained areas but, instead of clauses of a fixed length, we use formulae

generated according to a particular fixed shape.

In the following definition we use Σ to denote a set of atomic predicates, and

LitsΣ to denote the set of literals that are built using such predicates.

Definition 3.1. A shape is a propositional formula S such that (i) S is built

using the conjunction and disjunction connectives only; and (ii) every predicate

appearing in S has exactly one occurrence in it. A Σ-instance of a shape is any
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The shape 〈2, 2, 2〉
Sample instances:

((¬x3 ∨ ¬x6) ∧ (¬x4 ∨ ¬x3))

∨(( x9 ∨ ¬x5) ∧ ( x3 ∨ x7))

((¬x6 ∨ x7) ∧ (¬x6 ∨ x2))

∨((¬x9 ∨ ¬x7) ∧ (¬x1 ∨ x4))

(( x4 ∨ ¬x4) ∧ ( x8 ∨ x6))

∨(( x7 ∨ x4) ∧ ( x4 ∨ x2))

Figure 3.1: Structure of the shape 〈2, 2, 2〉 and sample instances

formula obtained by replacing every predicate in the shape by a literal from the

set LitsΣ. A randomly generated Σ-instance of a shape S, is a formula obtained

by independently and uniformly choosing literals from the set LitsΣ to replace

each predicate occurring in S. �

In the sequel we assume that Σ is clear from the context and simply use the

term instances instead of Σ-instances. The formula (v1 ∧ v2) ∨ v3 is an example

of a shape. Two {x1, x2, x3, x4}-instances of this shape are (¬x3 ∧ x2) ∨ ¬x1

and (¬x4 ∧ x3) ∨ x4. Let us introduce a special kind of shape, called balanced

conjunctive-disjunctive shapes ; informally these are balanced trees of alternating

conjunctions and disjunctions.

Definition 3.2. Given d integers k1, . . . , kd (with d ≥ 0 and ki ≥ 2) we define

two sets of formulae Jk1, . . . , kdK and 〈k1, . . . , kd〉 recursively as follows.

1. If d = 0, then the formulae in both J K and 〈 〉 are literals.

2. If d ≥ 1 then every formula in Jk1, k2, . . . , kdK is a conjunction of k1 formulae

in 〈k2, . . . , kd〉. Likewise, every formula in 〈k1, k2, . . . , kd〉 is a disjunction of

k1 formulae in Jk2, . . . , kdK. �

If we have a large enough set of predicates Σ, then every set 〈k1, . . . , kd〉 con-

tains a shape S; moreover 〈k1, . . . , kd〉 is the set of all instances of this shape (and

similar for Jk1, . . . , kdK). For this reason we will sometimes refer to 〈k1, . . . , kd〉 as

a balanced disjunctive shape and to Jk1, . . . , kdK as a balanced conjunctive shape.

The value d is called the depth of the shape.

Note that these balanced shapes and their instances are formulae in negation

normal form (NNF); Figure 3.1 presents one example. Moreover every formula in
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negation normal form is an instance of some shape. We define now the random

〈k1, . . . , kd〉-SAT model as follows: The parameters are the number of predicates n

and a real number r. A formula is produced as the conjunction of [rn] randomly

generated {x1, . . . , xn}-instances of 〈k1, . . . , kd〉, where [rn] denotes the integer

closest to rn. Note that the case 〈k〉 gives us exactly the random k-SAT model.

Moreover, there is no need to consider the model of random Jk1, . . . , kdK-SAT

since this would be equivalent to k1[rn] random instances of 〈k2, . . . , kd〉.
Several properties of balanced shapes are useful to characterise the hardness

of the generated random formulae. The following theorem, for example, is useful

to compute the probability that one of the generated formulae will be satisfied

by an arbitrary truth assignment.

Theorem 3.1. Let t be an arbitrary but fixed truth assignment. The probability

p〈k1,...,kd〉 that t satisfies a random instance of 〈k1, . . . , kd〉 can be computed as

follows:

p〈 〉 = 1/2 ,

p〈k1,...,kd〉 = 1− (p〈k2,...,kd〉)
k1 .

Proof. The probability is easily obtained, using very simple combinatorial argu-

ments, as the number of instances of the shape that are satisfied by the fixed

truth assignment divided by the total number of instances of the shape (with

respect to a set Σ with a fixed number of predicates). �

Intuitively shapes with a value of p very close to 0 are very hard to satisfy,

so a fewer number of them are sufficient to make a randomly generated problem

unsatisfiable. Conversely a value of p very close to 1 would make a random

instance quite easy to satisfy, so only very large formulae have a chance of being

unsatisfiable. The latter effect has been experimentally observed on random k-

SAT for large values of k (Mitchell and Levesque, 1996) and is confirmed by

analytical lower bounds of the crossover region (Achlioptas and Peres, 2003).

Theorem 3.2. The probability that a random instance of 〈k1, . . . , kd〉-SAT is

satisfiable, with n predicates and density r, tends to 0 as n→∞ for all values of

r > log 2/ log(1/p). Where p is computed as in Theorem 3.1.

Proof. A fixed truth assignment t satisfies a conjunction of [rn] instances of

〈k1, . . . , kd〉 with probability p[rn]. The expected number of satisfying assign-
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ments is therefore 2np[rn]. This value (and thus the probability of the instance

being satisfiable) tends to 0 as n→∞ when r > log 2/ log(1/p). �

This simple argument, useful to estimate the location of the critical region,

has also been used to give an easy upper bound of the random k-SAT crossover

point (Cook and Mitchell, 1997).

3.1.3 Translation to clausal normal form

While the formulae generated by our proposed model are non-clausal, modern

satisfiability solving procedures are designed under the assumption that their

input is a clausal formula. There is a recent interest on the design of non-clausal

satisfiability testing algorithms (Thiffault et al., 2004; Giunchiglia and Sebastiani,

2000; Stachniak, 2002), but mature implementations are not readily available (see

Section 3.1.5). So, in order to measure the hardness of our formulae we decided

to translate them into clausal normal form first and then use a standard clausal

solver. This raises the important question on how the choice of a particular

translation affects the performance of existing solving procedures.

To test our formulae we used two kinds of translations. The standard trans-

lation (equivalence preserving) is simply based on distributive properties of dis-

junction and conjunction. It is well known, as we already saw on Section 2.2,

that such translation causes an exponential increase in the size of the problem.

Theorem 3.3. The standard translation of the balanced shape 〈k1, . . . , kd〉 pro-

duces a CNF formula with clauses of the same length. Moreover, the length is the

product of all the ki with i odd.

Table 3.1, in particular the left column under the ‘length’ header, illustrates

this theorem showing the clause lengths of several shapes. The second translation

we consider is an optimised translation (structure preserving). It uses the so

called naming technique of Tseitin’s translation, also discussed in Section 2.2,

which avoids the exponential size increase by introducing new predicates.

Given a clausal formula F = C1 ∧ · · · ∧ Cn, i.e. each Ci is a clause, the name

of the formula F , denoted pF , is a fresh new predicate and its clausal definition

is the clausal formula ∆F = (¬pF ∨ C1) ∧ · · · ∧ (¬pF ∨ Cn). The formula ∆F ,

which is equivalent to pF→F , is used to fix the meaning of the newly introduced

predicate in the problem. Also if n = 1 the new name is not required, in that

case we let pF denote the formula F itself and let ∆F be the ‘empty’ formula.
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The translation works in a bottom up fashion, translating each child subfor-

mula into CNF before the parent. The naming technique is used to translate a

disjunction F1 ∨ · · · ∨ Fn of CNF formulae into pF1 ∨ · · · ∨ pFn and adding the

clauses in ∆F1 , . . . , ∆Fn to a stack of definitions. It is easy to show (see e.g.

Tseitin, 1968; Plaisted and Greenbaum, 1986) that the final translated formula

augmented with the stack of definitions is satisfiable if and only if the original

propositional formula is.

The optimised translation has the main advantage of keeping the size of the

translated formula small (linear with respect to the original), at the cost of intro-

ducing new predicates. It was interesting to see how modern solvers cope with

this increase in the number of predicates and to determine whether the introduced

optimisations are useful or not.

3.1.4 Experimental study

In order to experimentally observe the distribution of our randomly generated

formulae we started by running small simulations with different shapes and pa-

rameter values on a variety of solvers. Table 3.1 shows properties of formulae

tested at this stage. In this table, ‘preds’ is the number of predicates in the shape

and p is the probability that a random instance is satisfied by a truth assignment,

see Theorem 3.1. Then ru is an upper bound of the crossover region, see Theo-

rem 3.2. The ‘weight’ of each shape is the product of the number of predicates

and ru; this serves to estimate the magnitude (i.e. the number of literals) that

the generated formulae would have in the hard region.

Consider for example the 〈2, 4, 2〉 shape. Although it is bigger and more

complex than a simple clause of length 4, we only need a few instances of them

([1.1n] instead of [10.8n]) to produce formulae which are difficult to solve. Low

weight shapes are interesting because they seem appropriate to generate hard

and short problems. The ‘length’ header has two columns; the left one shows the

length of the resulting clauses for the standard translation, as in Theorem 3.3;

while the right one shows the average clause length for the optimised translation.

Finally ‘fresh’ is the number of fresh predicates introduced by the optimised

translation for each generated instance of the shape.

Using this information we designed several experiments whose results we de-

tail now. At this stage we considered four solvers: zChaff (2004.5.13), a care-

fully engineered implementation of the DLL procedure (Moskewicz et al., 2001);
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shape preds p ru weight length fresh
〈3, 2〉 6 0.578 1.26 7.59 3 2.14 3
〈3〉 3 0.875 5.19 15.57 3 3.00 0
〈2, 4, 2〉 16 0.533 1.10 17.61 4 2.89 2
〈6, 3〉 18 0.551 1.16 20.95 6 2.21 6
〈2, 2, 3, 2〉 24 0.557 1.18 28.41 6 2.27 14
〈4〉 4 0.938 10.83 43.32 4 4.00 0
〈3, 3, 2〉 18 0.807 3.23 58.11 6 3.00 3
〈2, 2, 4, 2〉 32 0.716 2.08 66.46 8 2.32 18
〈2, 5, 3〉 30 0.763 2.56 76.78 6 3.82 2
〈5〉 5 0.969 21.83 109.16 5 5.00 0
〈2, 2, 2, 2, 2〉 32 0.880 5.42 173.51 8 2.95 10

Table 3.1: List of properties of some balanced shapes
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Figure 3.2: Probability of satisfiability of random 〈3, 3, 2〉-SAT with 70 predicates
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Figure 3.3: Branches explored by zChaff on random 〈3, 3, 2〉-SAT with 70 pred-
icates

march eq (2004.3.20, 100% lookahead), which integrates equivalence reasoning

techniques (Heule et al., 2004); kcnfs (2003.2.12), a solver with efficient heuris-

tics to solve random k-SAT formulae (Dubois and Dequen, 2001); and the Adap-

tive Novelty+ stochastic local search algorithm (Hoos, 2002) implemented in

the UBCSAT (2004.07.27) experimentation environment (Tompkins and Hoos,

2004). These solvers were selected using the results of the SAT Competition

2004 (Le Berre and Simon, 2004) as a reference. Moreover, we wanted to use

very diverse solvers in order to observe how different strategies and clausal form

translations perform in this setting with mixed randomness and structure. The

experiments were run in parallel on 45 computers, each having an Intel III 1GHz

CPU and 512Mb RAM.

In a first experiment we performed an analysis of random 〈3, 3, 2〉-SAT for-

mulae generating 500 samples for each parameter value. The purpose of this

experiment was to obtain an accurate description of the probability distribution

of this shape. Figure 3.2 shows an already familiar picture: the probability that

a generated formula is satisfiable changes from almost 1 to almost 0 in a narrow

region around the 0.5 probability point, in this case close to r = 3.07.

Figure 3.3 shows the median of the number of branches explored by zChaff

when solving these formulae. The easy-hard-easy pattern is reproduced with the

hardest problems near the crossover point. The same basic pattern was found
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Figure 3.4: Branches explored by zChaff on random 〈3, 3, 2〉-SAT with 60 pred-
icates, factored by satisfiability

in all our experiments with different solvers and shapes. Compared to analogous

results on random 3-SAT, the transition from easy to hard is much more sudden

(increasing from a few hundred to more than 1.3 million branches in a region of

length 0.3), while the decay after leaving the critical region is gradual and slow.

Figure 3.4, which presents these results factored into satisfiable and unsatisfiable

groups, suggests that most of the satisfiable formulae are rather easy to solve;

while the unsatisfiable ones, several order of magnitudes harder, dominate the

behaviour of the curve as soon as they appear. This figure also shows, however,

that the few satisfiable formulae to the right of the crossover point also sometimes

have a significant difficulty.

Using a more intense sampling near the critical region (1000 test cases per data

point) we observed the so called scaling window effect. Let ε be a real number

(0 < ε < 0.5), the ε-window is the interval of values of r where the probability of

satisfiability lies within ε and 1 − ε. Figure 3.5 shows how the length of the 0.1

and 0.01-windows (the former with a thicker plot line) decreases as the value of

n increases; the crossover point is also marked with a small circle. This serves to

provide observable evidence that sharp phase transition is likely to occur.
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Figure 3.5: Scaling 0.1 and 0.01-windows on random 〈3, 3, 2〉-SAT formulae

Local search methods

The Adaptive Novelty+ algorithm was considered to evaluate the effective-

ness of local search methods for solving this class of formulae. Recall that this

is an incomplete procedure and thus it is only able to find solutions of satisfiable

instances. This imposes some limitations on the kind of experiments that we can

perform since, for example, it solves all the satisfiable instances of the previous

experiment in just a few minutes. The number of predicates had to be increased

in order to obtain more significant data to be analysed. But this, in turn, makes

it impossible the use of complete solvers to filter out unsatisfiable instances in a

reasonable amount of time. We decided to generate 500 formulae with 140 pred-

icates for each parameter value where, according to Figure 3.2, some satisfiable

instances were expected to be found.

One of the first observations that we made is that the choice of a clausal form

translation has a direct impact on the raw efficiency of the solver. It performs

about 1 million flips per second on formulae obtained with the standard transla-

tion. While the shorter formulae produced by the optimised translation allow up

to 11.9 million flips per second. Taking this into account, the cutoff parameter

was set giving each of the two translations roughly the same amount of CPU time

to solve each problem.

Table 3.2 shows the percentage of satisfiable formulae found with each trans-
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r standard optimised
2.0 100.0% 100.0%
...

...
...

2.8 100.0% 99.6%
2.9 99.6% 91.6%
3.0 80.4% 41.0%
3.1 32.4% 12.2%
3.2 8.6% 3.2%
3.3 0.2% 0.2%

Table 3.2: Success rate of Adaptive Novelty+ on random 〈3, 3, 2〉-SAT with
140 predicates
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Figure 3.6: Average CPU time of Adaptive Novelty+ on random 〈3, 3, 2〉-SAT
with two different translations
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Translation clauses length predicates
standard 2240 4 140
optimised 1260 2.89 420

Table 3.3: Statistics on the translations of random 〈2, 4, 2〉-SAT with 140 predi-
cates and a value of r = 1.0

Translation zChaff march eq kcnfs
standard 431.5 min 58.3 min 14.8 min
optimised 722.8 min 31.9 min 19.1 min

Table 3.4: CPU time for different solvers and translations on random 〈2, 4, 2〉-SAT
with 140 predicates

lation at several settings for the parameter r. It shows that the standard trans-

lation, despite of its inferior raw performance, is far more effective in finding

solutions than the optimised one. Moreover, as Figure 3.6 shows, the CPU time

required to find these solutions is also considerably smaller. This results show

how the reductions achieved by the optimised translation, at the cost of the in-

troduction of many new predicates, adversely affects the overall effectiveness of

the solver.

Complete methods

We also wanted to compare the performance of the complete solvers with respect

to the clausal form translation applied. For this test we generated a smaller

set of problems (50 samples per point) with instances of random 〈2, 4, 2〉-SAT.

In this case the crossover point was found near the r = 1.0 sample. Table 3.3

shows some statistics that compare the clausal representations provided by the

two translations. In Table 3.4 the total CPU time usage of the solvers on each

translation is shown.

Figure 3.7 shows the relation between the two translations for several values

for r. The symbol branch(x, y) denotes the total number of branches explored

while solving the 50 problems, with a fixed value of r, for each combination of a

solver x and a translation y. The proportion branch(x, opt)/branch(x, std) helps

to provide a fair comparison indicating how the use of the optimised instead of

the standard translation improved (< 1) or deteriorated (> 1) the performance

of the solver. It is quite surprising that no translation was found decisively better

than the other.
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Figure 3.7: Effectiveness of the optimised translation on random 〈2, 4, 2〉-SAT

The solvers zChaff and kcnfs showed a better performance with the stan-

dard translation and, conversely, march eq found more useful the optimised

one. We suspect that, since march eq incorporates equivalence reasoning, the

use of the optimised translation helps the solver to figure out the structure of

the problem. While, for the other two solvers, the introduction of new predicates

by the optimised translation has the undesirable effect of increasing the total

space that needs to be searched. It is worth mentioning that we also performed

some experiments with other shapes and parameter values, where the general

observations already discussed in this section were also found.

3.1.5 Related work

The study and development of non-clausal procedures for the satisfiability prob-

lem is quite recent. Some authors have initiated a search for tractable classes of

non-clausal problems (Altamirano and Escalada-Imaz, 2000), while others look

for possible ways to generalise the DLL method (Thiffault et al., 2004; Giunchiglia

and Sebastiani, 2000; Stachniak, 2002). It would have been interesting to test

our formulae with the system NoClause developed by Thiffault et al. (2004).

We encountered, however, some portability issues with the current version of the

software that prevented us from doing some experimentation. In the work of

Stachniak (2002) a first attempt to build hard non-clausal formulae is made, they
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are instances of J2, 2, [rn], 3K, however no evidence of sharp phase or difficulty

patterns were reported.

Another interesting related work is an analytical study on the satisfiability of

randomly generated and-or trees, similar to the formulae presented here but with

randomness applied to the structure, developed by Luby et al. (1998). Also, after

the publication of our work (Navarro Pérez and Voronkov, 2005), new tighter

upper bounds for the critical region of random 〈k1, . . . , kd〉-SAT were computed

by Santillán Rodŕıguez (2007).

Although most of the research on randomly generated SAT problems is focused

on the random k-SAT model, other variants are also found in literature. Monasson

and Zecchina (1997) proposed a random (2+p)-SAT model that, based on insights

from statistical mechanics, mixes 2- and 3-SAT clauses. Other variable length

models have also been considered (constant probability, or expected length) but

they were found unsuitable for the production of hard problems (Mitchell et al.,

1992; Mitchell and Levesque, 1996).

Generation of structured hard instances for the SAT problem has usually

been done by translating problems from other domains (graphs, combinatorics,

optimisation, etc.) into propositional formulae. Other generators, such as XOR-

SAT (Barthel et al., 2002), are particularly designed to produce only satisfiable

instances. There has also been a lot of interest in the more general setting of

random constraint satisfaction problems (Gent et al., 2001), and generalised sat-

isfiability problems (Creignou and Daude, 2002).

3.1.6 Results and conclusions

Extensive research on the satisfiability problem has lead to a deeper understand-

ing of this and many other important problems in AI and related fields. Very

efficient implementations of solving procedures are now easily available, and the

performance of state-of-the-art solvers keeps improving each year. We believe

that, in the near future, a great deal of research effort will be spent on the develop-

ment of new theories and procedures that, extending current known approaches,

will be able to handle general classes of formulae that encode information in a

more succinct and efficient way.

In this section we have presented a model that generates hard non-clausal

random formulae. We expect this procedure to provide diverse and challenging

material to evaluate the performance of current and next generation solvers that
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have started to introduce non-clausal features. An example is the system devel-

oped by Muhammad and Stuckey (2006), who have already used our model as

a source of benchmarks. We have carried out a careful experimental observation

of the properties exhibited by these formula distributions where the sharp phase

phenomenon and easy-hard-easy patterns were found.

Another contribution of this work, not done before to the best of our knowl-

edge, is a first study on how the use of a particular clausal translation affects

the performance of existing clausal solving procedures. Moreover, although these

results apply only to our randomly generated formulae, they raise interesting

questions on how to efficiently deal with real-world problems which are often

described in a non-clausal setting.

3.2 Encoding real-world problems

In order to simplify its design and implementation, modern satisfiability solvers

typically work on formulae in clausal normal form so that arbitrary proposi-

tional formulae first need to be translated into this format. This has long been

the standard approach since the translation proposed by Tseitin (1968), and later

improver by Plaisted and Greenbaum (1986), allows to efficiently translate arbi-

trary propositional formula into an equisatisfiable set of clauses.

It has been noted, however, that this translation tends to introduce many

unnecessary atoms. One of the simplifications of the SatELite preprocessor

(Eén and Biere, 2005), for example, is specifically targeted to identify atoms

introduced by Tseitin’s translations, as introduced in Section 2.2, and ‘undo’

their introduced definitions. This motivated our interest to design a translation

which, while still producing a result of polynomial size with respect to the input,

tries to introduce as few new atoms as possible.

This section explores first some ideas in this direction, on the definition of

a more economical clausal form translation, and later discusses a possibility to

extend satisfiability solvers to deal with more kinds of constraints other than

just clauses. Valuable lessons are learnt from this research work, which suggests

that a more clear understanding on the properties of real-world problems, and

their clausal encodings, is needed. This section finishes with reflections on how

to characterise and evaluate the properties of propositional problem encodings.
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3.2.1 An improved clausal form translation

In the following we assume that logical connectives are not only binary, but

that they have multiple arity. In particular we will allow n-ary (with n ≥ 2)

conjunctions, disjunctions and parity formulae. A parity formula is an expression

of the form A1 ⊕ · · · ⊕ An which evaluates to true under an interpretation if an

odd number of the Ai subformulae evaluate to true. Note that A ⊕ B, a binary

parity formula, corresponds to the connective of exclusive disjunction, and that

an equivalence A↔B can be rewritten as ¬A⊕B.

Moreover, we will also assume that these connectives are already flattened ;

this implies that a formula such as ((a ∧ b) ∧ c) is identified with (a ∧ b ∧ c). We

also assume that the true and false constants do not appear as a subformula. It is

easy to see that these constants, as in Section 2.2, can be eliminated by evaluation

of the formulae they appear in. The only case where the > or ⊥ connectives are

allowed is when the entire formula is simplified to one of them.

We do not explicit assume or disallow the commutativity of our connectives

(i.e. whether two formulae that only differ by a permutation of their operands are

identified with each other or not), this might be an implementation dependant

decision of the translations presented here.

Extended normal forms

We introduce now a particular negation normal form that, unlike the standard

definition given in Section 2.2, still allows the use of parity formulae in the final

reduced expression.

Definition 3.3. A formula A is in negation normal form, or simply NNF, if

the formula is either >, or ⊥, or is built from literals using the connectives of

conjunction, disjunction and parity only. The negation connective, in particular,

is only allowed to appear in front of an atom to form a literal.

As usual, a formula B is called a negation normal form of a formula A if B is

equivalent to A and B is in negation normal form. �

Algorithm 3.1 (Negation normal form translation). The rewrite rule system

on formulae of Figure 3.8 gives an algorithm to translate arbitrary propositional

formulae into a negation normal form representation. Given an input formula,

the algorithm simply applies the rewrite rules in a nondeterministic manner until

a negation normal form is obtained.
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¬(A1 ∧ · · · ∧ An) ⇒ (¬A1 ∨ · · · ∨ ¬An) (3.1)

¬(A1 ∨ · · · ∨ An) ⇒ (¬A1 ∧ · · · ∧ ¬An) (3.2)

¬(A1 ⊕ A2 ⊕ · · · ⊕ An) ⇒ (¬A1 ⊕ A2 ⊕ · · · ⊕ An) (3.3)

(A1↔ A2) ⇒ (¬A1 ⊕ A2) (3.4)

¬¬A ⇒ A (3.5)

Figure 3.8: Rewrite rules for negation normal form translation

The reader can easily verify that the rewriting rule system is terminating and

that the resulting expression is, indeed, a negation normal form. Similar to stan-

dard normal form translations, this algorithm works by pushing negation inwards

into other connectives. In particular note that rule (3.4) allows to completely re-

move equivalence and, when applying rule (3.3), only one of the operands of the

parity constraint needs to be modified.

Remark. This negation normal form has some useful properties. In particular

the effect of the negation connective is now much simpler, and we do not need

to explicitly take into account the polarity of subformulae as the approach of

Plaisted and Greenbaum (1986) does. In their terms, all subformulae have a

positive polarity, except for those below the scope of parity constraints which

have a polarity of zero.

We now introduce another normal form that, as we will see in later sections,

is quite useful to achieve an efficient clausal form translation. We will see, in

particular, that to make a “half-definition” of such formulae (the term is properly

introduced later) only one new predicate is required.

Definition 3.4. An extended clause is either a regular clause or a parity clause,

i.e. a parity formula built using only literals. A formula A is in extended clausal

normal form, or simply XCNF, if it is a conjunction of extended clauses.

Likewise, a formula B is called an extended clausal normal form of a formula

A if B is equivalent to A and B is in extended clausal normal form. �

Renaming translation

We now proceed to introduce a variation of the structure preserving clausal form

translation due to Tseitin (1968). To clarify the presentation it is presented as

two separate stages: First some subformulae are replaced by new predicates and
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definitions for these predicates are introduced. In a second stage, the definitions

themselves are translated into clausal normal form.

Definition 3.5. A full-definition is a formula x↔A, where x is an atom and A

a formula. Similarly, a half-definition is a formula of the form x→ A. �

Algorithm 3.2 (Economic subformula renaming). This algorithm takes as input

a formula A in negation normal form. It produces as output a formula As and a

set ∆A of half-definitions, full-definitions, and parity clauses.

Figure 3.9 depicts three formula mappings: Bf , Bh and Bs; that are applied

to subformulae of A. These are called the full, half and skip renaming mappings

respectively. Each of these rules is evaluated as follows:

• First, if any, the formula to the far right (next to the “ | ” symbol) is con-

structed. This might involve recursion and further evaluation of other for-

mula mappings. After the formula has been constructed it is added to the

global set ∆A.

• Then the formula to the right of the “⇒” symbol is similarly constructed

and returned as the result of each particular mapping application.

The algorithm works by computing As, then it returns this formula together with

the final set ∆A obtained.

We provide now several remarks and claims about the previous algorithm.

Theorem 3.4. Algorithm 3.2 and the mappings defined in Figure 3.9 satisfy the

following properties:

1. The renaming mappings Bf and Bh always return a single literal.

2. The renaming mapping Bs returns a formula in XCNF.

3. The algorithm terminates and produces a formula As in XCNF.

4. Moreover, the set of definitions ∆A only contains:

(a) Full-definitions of the form x↔ (x1 ∧ · · · ∧ xn).

(b) Parity clauses of the form (x̃⊕ x1 ⊕ · · · ⊕ xn).

(c) Half-definitions of the form x→B, where B is in XCNF.
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xf ⇒ x (3.6)

(B1 ∧ · · · ∧Bn)
f ⇒ xB | xB↔ (Bf

1 ∧ · · · ∧Bf
n) (3.7)

(B1 ∨ · · · ∨Bn)
f ⇒ xB | x̃B↔ (B̃f

1 ∧ · · · ∧ B̃f
n) (3.8)

(B1 ⊕ · · · ⊕Bn)
f ⇒ xB | (x̃B ⊕Bf

1 ⊕ · · · ⊕Bf
n) (3.9)

xh ⇒ x (3.10)

(B1 ∧ · · · ∧Bn)
h ⇒ xB | xB→ (Bs

1 ∧ · · · ∧Bs
n) (3.11)

(B1 ∨ · · · ∨Bn)
h ⇒ xB | xB→ (Bh

1 ∨ · · · ∨Bh
n) (3.12)

(B1 ⊕ · · · ⊕Bn)
h ⇒ xB | xB→ (Bf

1 ⊕ · · · ⊕Bf
n) (3.13)

xs ⇒ x (3.14)

(B1 ∧ · · · ∧Bn)
s ⇒ Bs

1 ∧ · · · ∧Bs
n (3.15)

(B1 ∨ · · · ∨Bn)
s ⇒ Bh

1 ∨ · · · ∨Bh
n (3.16)

(B1 ⊕ · · · ⊕Bn)
s ⇒ Bf

1 ⊕ · · · ⊕Bf
n (3.17)

Figure 3.9: Mapping rules for the economic subformula renaming

Proof. Each item follows by a careful examination of Figure 3.9 and the validity

of previous items. Item 2 is, perhaps, the less clear one; but it actually follows

from Item 1 and a simple examination of rules (3.14–3.17). Item 4(d) follows by

a similar argument on definitions introduced by rules (3.10–3.13). �

Remark. The distinction of full- and half-renaming mappings take into account

the usual optimisations in terms of subformula polarity (see e.g. Plaisted and

Greenbaum, 1986).

Compared to the standard formalisations and implementations of the renam-

ing translation, the most significant improvement is condensed in rule (3.11)

which avoids the renaming of operands of conjunctions with positive polarity at

any formula depth (not only at the root, which is a usual optimisation).

Moreover, after a close examination the reader might notice that rule (3.12)

is never invoked in the computation of As (under the assumption of a flattened

formula). The rule is anyway included for completeness of the definition.

Theorem 3.5. A formula A is satisfiable if and only if so is ∆A ∪ {As} is.

Proof. The proof follows by structural induction on the definitions in Figure 3.9

and the standard textbook arguments for the correctness of Plaisted and Green-
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baum (1986) translation. In particular note that (x̃B ⊕ xB1 ⊕ · · · ⊕ xBn) is just

an alternative way of writing xB↔ (xB1 ⊕ · · · ⊕ xBn). �

We begin now with the second phase of the translation which takes the output

of Algorithm 3.2 and produces a formula in CNF. This, in turn, is done in two

steps: first parity clauses are replaced by sets of regular clauses, then half- and

full-definitions are are also replaced by their clausal form equivalents.

Algorithm 3.3 (Clausal form translation of parity clauses). Parity clauses of

length n > 3 are translated first to a set of n − 2 ternary parity clauses by

introducing n− 3 new predicates, denoted here as y1, . . . , yn−3, as follows:

(x1 ⊕ x2 ⊕ · · · ⊕ xn−1 ⊕ xn) ⇒ x1 ⊕ x2 ⊕ y1

ỹ1 ⊕ x3 ⊕ y2

...
...

...

ỹn−4 ⊕ xn−2 ⊕ yn−3

ỹn−3 ⊕ xn−1 ⊕ xn .

Then, for binary and ternary parity clauses, the standard clausal form translation

is finally applied:

x1 ⊕ x2 ⇒ x1 ∨ x2

x̃1 ∨ x̃2 ,

x1 ⊕ x2 ⊕ x3 ⇒ x1 ∨ x2 ∨ x3

x1 ∨ x̃2 ∨ x̃3

x̃1 ∨ x2 ∨ x̃3

x̃1 ∨ x̃2 ∨ x3 .

Remark. After applying Algorithm 3.3 to the output of Algorithm 3.2 we obtain

a formula with similar properties to the ones described in Theorem 3.4 except

for the fact that the returned formula, as well as the right hand side of half-

definitions, are now in clausal form. Moreover, the set of definitions does not

contain parity clauses any more, but just plain clauses.

Algorithm 3.4 (Clausal form translation of definitions). This algorithm takes as

input a set of half- and full-definitions as already simplified by previous algorithm.

It then applies the rules described in Figure 3.10 to replace each definition by a

number of clauses. Note that half-definitions have the form x→ (C1 ∧ · · · ∧ Cn)
where each Ci is a clause. The output is the set of clauses computed.
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x→ (C1 ∧ · · · ∧ Cn) ⇒ x̃ ∨ C1
...

x̃ ∨ Cn

x↔ (x1 ∧ · · · ∧ xn) ⇒ x ∨ x̃1 ∨ · · · ∨ x̃n
x̃ ∨ x1

...

x̃ ∨ xn

Figure 3.10: Rewrite rules for half- and full-definitions

Theorem 3.6. Given formula A, let A′ be the result of applying Algorithms 3.1

through 3.4 including the conjunction of the set of definitions also computed by

them. Then A′ is in clausal normal form and is equisatisfiable with A.

Proof. It follows by the correctness of each individual algorithm. �

Experimental evaluation

In order to evaluate the effectiveness of our proposed improvements on the clausal

form translation, we carried out some experiments to compare this approach with

existing available systems. For this we took an example from Biere et al. (1999),

the proof of a reachability property on a barrel shifter with k registers, and

compared the performance of the translation done by the bmc tool, also described

by these authors, and our own implementation. We then ran MiniSat (Eén and

Sörensson, 2005) to evaluate the performance that a modern satisfiability solver

has while solving the generated formulae.

Table 3.5 summarises the results of these experiments, showing the number of

predicates and clauses required to build the formula by each translation, as well

as the running time of MiniSat in seconds. The time required to generate the

formulae was negligible, and roughly equivalent, for both translations. As can be

seen, our proposed translation not only produces fewer predicates and clauses,

but also significantly improves the performance of the solver when processing

these examples.
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bmc tool new translation
k preds clauses time preds clauses time
2 50 159 0.0 33 103 0.0
3 275 942 0.0 184 546 0.0
4 578 2035 0.0 369 1107 0.0
5 1407 5383 0.9 881 2808 0.4
6 2306 8931 4.7 1405 4503 2.3
7 3523 13765 25.1 2101 6758 5.1
8 5106 20083 90.2 2993 9651 38.9
9 8903 36606 180.8 5176 17328 37.1

10 11982 49483 570.2 6881 23083 92.4

Table 3.5: Experimental evaluation of improved clausal form translation

3.2.2 Using specialised constraints

During the development of the translation described in the previous section, we

observed that, potentially, most atoms are introduced while clausifying parity

clauses. This was our motivation to implement a solver with direct support of

parity clauses, with the hope that it would improve the performance on the solver

on instances with many parity clauses.

Moreover, most implementation techniques discussed in Chapter 2 can easily

be modified in order to handle parity clauses. The most significant changes were

needed to adapt the watched literals scheme for parity clauses. In this case, it

is enough to watch two literals on each parity clause, but literals have to be

watched on both of their positive and negative phases. In total we need to set

4 watches for every parity clause (independent of its length), compare this with

the 8 watches needed if a ternary parity clause is clausified, or the 8(n− 2) for a

parity clause of length n clausified using Algorithm 3.3.

Algorithm 3.5 shows the modified version of the algorithm to update the

watched literals in a parity clause when performing unit propagation. This idea

was implemented in a version of MiniSat (Eén and Sörensson, 2005) with sup-

port of custom constraints but, unfortunately, it was not as successful as ex-

pected. First we observed that problems from typical applications do contain

large amounts of parity clauses, but most of them are of size 2 or 3, which do

not introduce new atoms when clausified and for which the savings in literals to

watch are not really dramatic. Moreover the possible advantages of the approach,

such as having a more compact representation and a reduced number of literals

to watch, turned out to be negligible for these short parity clauses.
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Algorithm 3.5 Find new literal to watch on a parity clause

procedure FindNewParityWatch(x)
s← false
for each literal y in the clause, y 6= x do

if y is set to true then
s← ¬s . parity so far

else if y is watched then
w ← y . w is the other watched literal

else if y is unassigned then
move watch from x to y . found a new literal to watch
move watch from x̃ to ỹ
return

end if
end for
if s is true then w ← w̃
add w with to the queue for unit propagation . unit clause detected

. if w̃ is already in the queue, this detects a conflict
end procedure

Another problem we faced is that there was no obvious way to translate for-

mulae such as x→(a⊕b), which are often produced in half-definitions, in terms of

clauses and parity clauses only. One approach was to clausify the right hand side

and loose any advantage of having support of such parity constraints. The other

approach was to ignore the polarity optimisation and write a single parity clause

(¬x⊕a⊕b). This, however, dramatically decreased the effectiveness of the solver,

making it explore a considerably larger search space in all our experiments.

3.2.3 Properties of problem encodings

The experience and lessons learnt from our experience with parity clauses pointed

out that, in order to develop better propositional encodings, one has to take into

account the properties and features that are typically found on problems from the

applications that we are more interested in solving. Moreover, it is also important

to understand the effect that properties of the generated encodings will have on

the performance and running time of a satisfiability solver when processing them.

Having this in mind, we decided to run a series of experiments to evaluate

the effect that a number of clausal form simplification techniques, in particular

those proposed by Eén and Biere (2005) and implemented in SatELite (see

Section 2.3), have in the behaviour of a DLL-style satisfiability solver.
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For this we first gathered a number of SAT benchmarks which have been com-

monly used in literature. This includes problems from bounded model checking

(Biere et al., 1999), microprocessor verification (Velev and Bryant, 2001) and a

number of assorted instances from the SATLIB library of problems (Hoos and

Stützle, 2000). After filtering out problems that were either too easy or too dif-

ficult to solve, 104 satisfiable and 28 unsatisfiable problems (solvable between a

few seconds and 20 minutes by standard MiniSat) remained.

We then ran two versions of MiniSat, with and without simplifications, and

collected a number of statistics such as the total running time, number of deci-

sions, unit propagations, restarts, conflicts and the amount of literals in conflict

clauses generated by these two solvers on each problem instance. We also analysed

the behaviour of two other defined predicates

compactness = propagations / decisions,

constrainedness = decisions / conflicts.

The first one, compactness, is the average number of unit propagations that a

solver has to do after deciding the value of a predicate. Intuitively a good en-

coding for a problem should be compact, i.e. the solver should be able to quickly

determine all the consequences of a given truth assignment.

The second, constrainedness, estimates the average number of guesses, or

decisions, that the solver had to make before reaching a conflict point. A priori,

it is unclear whether one would prefer to to increase or reduce this indicator.

On unsatisfiable problems, the constrainedness of a problem estimates the depth

of the decision tree that describes the total search space to explore. A small

constrainedness value might suggest a smaller search space, however it might

also be the case, in particular for satisfiable problems, that solutions are more

difficult to guess and that it might be harder to find one.

One of the first observations we made on the results, is that the behaviour

of the solvers is quite different between satisfiable and unsatisfiable problems. In

general, changes between solving an unsatisfiable problem with and without sim-

plifications tend to be more consistent. In anyway, the solver still has to exhaust

the search space before determining that the given problem has no solutions. On

the other hand, satisfiable problems are much more unstable since ‘luck’, not only

simplifications and optimisations, is often an important factor on whether a so-

lution is found early or late in the search. In view of this, we analysed satisfiable

and unsatisfiable problems separately.
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unsat sat
time −46.9% −25.8%
decisions − 5.1% −22.2%
propagations −52.1% −43.5%
restarts + 4.3% − 9.3%
conflicts +33.2% −31.3%
conf. lits. + 2.3% −40.6%
compactness −61.0% −28.3%
constrainedness + 0.5% +13.2%

Table 3.6: Summary the of effects of simplification techniques

Table 3.6 shows a summary of how the statistics collected were affected by the

application of preprocessing simplifications. On average, unsatisfiable problems

were solved almost 50% faster when applying the simplifications, while satisfiable

ones had an average speedup of about 25%. Interestingly, when simplifications are

applied, unstatisfiable problems tend to generate more conflicts (+33.2%) which

only causes a small increase on memory consumption (reflected on the +2.3%

increase on conflict literals). This also suggests that the simplifications performed

are helping the solver to learn ‘better’ (i.e. shorter) conflict clauses. On the other

hand, the number of conflicts is considerably reduced (−31.3%), as well as the

number of conflict literals (−40.6%), for instances which are satisfiable. Overall

it is interesting to observe that the number of unit propagations is considerably

reduced on both unsatisfiable (−52.1%) and satisfiable cases (−43.5%).

Now, to get a deeper understanding of how these variables relate with the

actual time required to solve a problem, Table 3.7 shows some contingency tables

to illustrate these relations. Each one of the inner cells shows the percentage of

problems on which the simplifying solver reported more (resp. less) occurrences

of some event while also the time required to solve it was more (resp. less). For

example, in 28.57% of the unsatisfiable problems both the number of decisions

and the total running time was incremented; and in 29.81% of the satisfiable

problems, although the number of unit propagations was reduced, the running

time did increase nevertheless. The third and fifth column, as well as the bottom

row, show margninal totals where it is shown, for example, that about 70% of

the unsatisfiable problems were solved faster using the simplifications while, for

satisfiable ones, it is less clear whether the simplifications were useful or not.

Some interesting points to observe are that the simplifications performed do

effectively tend to reduce the number of unit propagations and, as one might
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unsat sat
time M time O time M time O

decisions M 28.57% 39.29% 67.86% 25.00% 1.92% 26.92%
O 0.00% 32.14% 32.14% 27.88% 45.19% 73.07%

propagations M 25.00% 3.57% 28.57% 23.08% 1.92% 25.00%
O 3.57% 67.86% 71.43% 29.81% 45.19% 75.00%

restarts M 28.57% 53.57% 82.14% 37.50% 3.85% 41.35%
O 0.00% 17.86% 17.86% 15.38% 43.27% 58.65%

conflicts M 28.57% 42.86% 71.43% 32.69% 1.92% 34.61%
O 0.00% 28.57% 28.57% 20.19% 45.19% 65.38%

conf. lits. M 28.57% 10.71% 39.28% 29.81% 3.85% 33.66%
O 0.00% 60.71% 60.71% 23.08% 43.27% 66.35%

compactness M 3.57% 0.00% 3.57% 23.08% 2.88% 25.96%
O 25.00% 71.43% 96.43% 29.81% 44.23% 74.04%

constrainedness M 7.14% 21.43% 28.57% 13.46% 38.46% 51.92%
O 21.43% 50.00% 71.43% 39.42% 8.65% 48.07%

28.57% 71.43% 100.00% 52.88% 47.11% 100.00%

Table 3.7: Contingency tables with effects of simplification techniques

expect, a reduction in the number of propagations does increase the chances

of speeding up the solving process. Moreover, a Fisher’s exact test (Devore,

1999) performed with the JMP Statistical Discovery software (SAS, 2007) finds

very convincing statistical significance for this hypothesis with p-values of less

than 0.0001 for both unsatisfiable and satisfiable instances. In statistic analysis,

a smaller p-value is an indicator of stronger confidence in the hypothesis being

tested. Interestingly, no such strong significance is found, in the unsatisfiable case,

for other variables such as the number of decisions or the number of conflicts.

On the other hand, for the case of satisfiable instances, Fisher’s exact test

does find very convincing statistical significance for the hypothesis that if the

compactness of a formula is increased (i.e. there are less unit propagations per

decision) then it is more likely that the solution time will be reduced. And,

confirming our early speculation, if the constrainedness is reduced (i.e. there are

more decisions between conflicts) then it is more likely that the solution will be

found earlier.

3.2.4 Results and conclusions

In this section we have explored many ideas while trying to understand the ef-

fect that different propositional encodings have when they are applied to logical
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formulae. It is indeed very puzzling to figure out what constitutes the basis for

a good encoding and, moreover, satisfiability solvers tend to be very sensitive to

even the slightest changes in the representation of an input formula.

We have, nevertheless, being able to propose an improved clausal form trans-

lation which, while trying to reduce the number of newly introduced predicates,

provides a significant reduction not only in the size of the generated formulae, but

also in the time that is required to solve them. Furthermore, as a valuable les-

son learnt from our experiments and implementations, we found that one should

always take into account, while designing encodings for satisfiability, the general

characteristics of the actual problems that we are willing to solve.

Finally, as a result of some statistical analysis, we do were able to obtain

some general advise which can be helpful for designers of propositional encodings.

First, better encodings seem to be those which are compact, i.e. that the effects

of assigning a truth value to a predicate are quickly propagated and computed

using unit propagation. Second, good encodings —particularly for unsatisfiable

formulae— are also constrained. This means that one should be able to quickly

detect conflicts when assigning inappropriate values to variables.

More comprehensive statistical studies are definitively needed in order to

gain more insight on the characteristics of propositional satisfiability encodings.

Nonetheless, we believe that our work sets an important precedent on the way

that research in this direction can be carried out, while already obtaining some

simple conclusions on this issue.

3.3 Concluding remarks

We have explored and documented in this Chapter most of the thesis contribu-

tions in the context of the propositional satisfiability problem. One of our earliest

contributions, which has been already considered as useful and interesting by the

research community (Muhammad and Stuckey, 2006; Gomes and Walsh, 2006;

Santillán Rodŕıguez, 2007), is a model to randomly generate logical formulae

not necessarily in clausal normal form. These formulae, moreover, are useful to

create benchmarks to test satisfiability solvers which either directly work with

non-clausal representations, or alternatively try to exploit the structural infor-

mation implicitly available on clausal encodings.

A couple of other contributions, found in the second section of this chapter,
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include the proposal of an improved clausal form translation, as well as some

empirical and statistical study on properties of encodings generated from real-

world applications. From these we are able to draw some interesting conclusions

which, moreover, translate into some useful advise for designers of propositional

encodings. In particular we observe that two indicators, the compactness and

constrainedness of an encoding, are directly related with the relative ease with

which problems can be solved.

This chapter, as well as already noted in the previous Chapter 2, starts to

highlight some of the inconveniences that one commonly faces when dealing with

propositional encodings. First, the formulae generated from applications tend

to quickly grow beyond the scope of existing technology, while their original

structure is clouded by normal form translations. The remaining chapters will

therefore introduce another alternative which, by the use of a logic with a higher

level of abstraction, attempts to provide a solution for this kind of issues.
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Effectively propositional logic

It has become customary in automated reasoning and artificial intelligence to

tackle problems by reducing them to checking the satisfiability of a formula in

some logical framework. Then one has to either find a model of the given logical

formula, or produce a refutation which proves that no such model exists. And

different logic systems, with distinct trade-offs between complexity and expres-

siveness, have been developed to use in this context.

Propositional logic, introduced in Chapter 2 and the main theme of previ-

ous chapters, is an alternative which, while being one of the simplest options,

offers enough expressive power to encode a significant number of problems and

applications in computer science. As we have seen, however, this logical language

has some drawbacks: the structure of problems generated from applications of-

ten tends to be lost or hidden behind the propositional encoding, and the size of

the encodings themselves tend to quickly grow beyond the capabilities of existing

solvers.

On the other hand of the spectrum, we have first-order logic which offers a

significantly increased expressibility but at the cost of a much higher complexity.

The problem of deciding whether a formula is satisfiable or not becomes unde-

cidable, i.e. there is no algorithm which, given as input a first-order formula, will

always terminate in finite time after deciding the satisfiability status of the for-

mula. The problem is, nevertheless, semi-decidable: there are procedures which,

if the input is unsatisfiable, will eventually terminate with a refutation of the

formula; but, if the problem is satisfiable, then the procedure might run forever

without never finding a solution.

As a compromise between these two possibilities, we consider the use of effec-

82
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tively propositional logic (EPR). Unlike propositional logic, formulae in this logic

can use variables, although the use of quantification is restricted and function

symbols are not allowed. This fragment of first-order logic, which also corre-

sponds to the Bernays-Schönfinkel class of formulae, has an ∃∗∀∗ quantifier prefix

when written in prenex normal form and is as expressive as propositional logic.

Alternatively, one can describe effectively propositional formulae as those hav-

ing a finite Herbrand universe. Thus, as a consequence of Herbrand’s theorem

formally stated later in Section 4.2, when testing for satisfiability it is possible to

replace an effectively propositional formula by all its ground instances which, in

turn, can be interpreted as simple propositional formulae and sent to a proposi-

tional satisfiability solver. Through this process, known in literature as instanti-

ation or grounding, it is possible to reduce any arbitrary effectively propositional

formula into an equisatisfiable propositional representation, and hence the name

‘effectively propositional’ used to describe them.

Moreover, the introduction of variables and a limited amount of quantification

are enough to allow the design of problem encodings which are often exponentially

shorter than their propositional counterparts. On the one hand, this allows one

to write problem descriptions which are usually much more succinct and even

natural for humans to read and understand. While, on the other, it also enables

the use of reasoning techniques which work directly with formulae written at a

higher level of abstraction.

Although quite recent, there has been a significant interest of the automated

reasoning community on effectively propositional logic. The CADE ATP System

Competition has, since its JC instalment in 2001, a division for EPR problems

(Pelletier et al., 2002). Moreover, a number of theorem provers particularly geared

towards this class of formulae have also been developed. These include, for ex-

ample, eground by Schulz (2002), Paradox by Claessen and Sörensson (2003),

Darwin by Fuchs (2004), and iProver by Korovin (2006).

In this chapter we will formally introduce the syntax and semantics of ef-

fectively propositional logic; and then briefly summarise some of the existing

techniques that have been currently designed to deal with this kind of formulae.

We will then also introduce another language, which we call finite domain predi-

cate logic, which puts some syntactic sugar on top of the effectively propositional

language in order to even more naturally describe problems from applications.
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4.1 Syntax and semantics

As in the propositional case, effectively propositional formula are built from atoms

combined with logical connectives. In this case, however, atoms are built from

predicates which may also have arguments. The following definition formally

introduces the syntax of effectively propositional logic.

Definition 4.1. The syntax of an effectively propositional logic is composed of

a non-empty but finite set of constant symbols D, also sometimes referred to as

the domain of the logic; and an infinite supply of variables which will be often

denoted by: x, y, . . . .1 There is also a set of predicate symbols P and, moreover,

each predicate symbol is associated with a positive integer which we call its arity.

A term is either a variable or a constant symbol. An atom is an expression

of the form p(t1, . . . , tn) where p is a predicate symbol of arity n and each ti is a

term. Effectively propositional formulae are then built from atoms using the stan-

dard propositional connectives of truth (true , >), falsity (false , ⊥), conjunction

(and , ∧), disjunction (or , ∨), and negation (not , ¬). Other connectives such

as implication and equivalence are defined in terms of those already introduced,

e.g. F →G ≡ ¬F ∨G and F ↔G ≡ (F →G) ∧ (G→ F ). A set of formulae will

be also often referred to as a set of constraints. The size of a formula, or set of

formulae, is counted as the number of symbols in it.

A literal is either an atom of the form p(t1, . . . , tn), a literal with a positive

phase, or its negation ¬p(t1, . . . , tn), a literal with negative phase. We will also

consider the notion of a signed predicate symbol which is either a predicate symbol

p or its negation ¬p. Then, a literal s(t1, . . . , tn) can be alternatively seen as a

pair of a signed predicate symbol s and a n-tuple of terms (t1, . . . , tn); where n

matches the arity of the predicate symbol in s. We will also use s̃ to denote the

logical complement of a signed predicate symbol s, i.e. s̃ = ¬p when s = p and

s̃ = p when s = ¬p. Similarly, if a literal is of the form l = s(t1, . . . , tn), then we

also define l̃ = s̃(t1, . . . , tn).

A clause is a disjunction of literals and a clausal formula is a set of clauses.

Although a clausal formula can be equivalently defined as a conjunction of clauses,

having them in the form of sets of constraints will later simplify the treatment

of its semantics. As in the propositional case, a unit clause is one that contains

a single literal, and the empty clause is the one that contains no literals at all.

1Not to be confused with the notation of literals in previous chapters.
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As usual, a formula is said to be in clausal normal form (CNF) if it is a clausal

formula. �

The following definition introduces the concept of a substitution, which is

used in expressions to replace variables by terms. Moreover, we also to define

other important related notions such as instances of formulae and unification.

Definition 4.2. A substitution is a function σ that maps variables to terms,

and behaves like the identity function almost everywhere. We denote by Fσ the

result of applying a substitution σ to a formula F , i.e. the formula obtained after

uniformly replacing every variable x in F with the corresponding term σ(x). A

substitution is often denoted by explicitly enumerating the non-trivial mappings

that it makes, e.g.: {x1 → t1, . . . , xk → tk}.
We also say that a formula F ′ is an instance of F if there is a substitution σ

such that F ′ = Fσ; also σ is a unifier of the formulae F and F ′ if Fσ = F ′σ, and

a most general unifier if, for any other unifier σ′, it is always possible to find a

substitution ρ such that σ′ = σρ. In a similar way, substitutions can be applied

to sets of formulae, clauses, atoms, terms or even tuples of terms.

As a convenience, if F is a formula, we will also often write F (x1, . . . , xk),

where the sequence x1, . . . , xk includes all the variables appearing in F , to explic-

itly denote the dependency of F on such variables. Moreover, after enumerating

the variables of F in such a way, we will also use the expression F (t1, . . . , tk) to

denote the formula F {x1 → t1, . . . , xk → tk}.
A set of formulae, a formula, an atom, a term or a tuple of terms is said

to be ground if it contains no variables. The Herbrand domain is the set of

all ground atoms which, for the case of effectively propositional logic, is always

finite. Finally, a ground instance of a formula F is any instance of F which is

also ground. �

We now proceed to define the semantics of effectively propositional formulae

in terms of Herbrand interpretations. Intuitively, these interpretations determine

which atoms are to be taken as true or false, while the truth value of a more

complex expression is evaluated from these values by using the standard meaning

of propositional connectives.

Definition 4.3. A Herbrand interpretation is a set of ground atoms, i.e. a subset

of the Herbrand domain. The notion of whether a Herbrand interpretation I is
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a model of a ground formula F , denoted by I |= F , is defined as follows:

I |= A iff A ∈ I, I |= F ∧G iff I |= F and I |= G,

I |= ¬F iff I 6|= F, I |= F ∨G iff I |= F or I |= G.

Also I is always a model of > and never of ⊥. Now a Herbrand interpretation I
is said to be a model of a non-ground formula F if it is a model of every ground

instance of F , and a model of a set of constraints if it is a model of every formula

in the set. A set constraints is said to be satisfiable if it has at least one model,

and unsatisfiable if it has no models. �

Since in the following we will mostly be dealing with effectively propositional

formulae and Herbrand interpretations, we will often simply say formula or pred-

icate formula when we refer to an effectively propositional formula and interpre-

tation when we refer to a Herbrand interpretation.

Although we will not always write sets of constraints in clausal normal form,

we do make sure that they can be easily rewritten in such form by using simple

logical identities (e.g. distributing connectives and changing implication for dis-

junction). This is more of a convenience and is used as an aid to more clearly

convey the intuitive meaning of a clause. For example

big(x) ∧ round(x) ∧ orbits-star(x)→ planet(x)

is equivalent to

¬big(x) ∨ ¬round(x) ∨ ¬orbits-star(x) ∨ planet(x) ,

but the meaning of the former is perhaps clearer to grasp.

Moreover, it is also possible to apply the translation proposed by Tseitin

(1968) to reduce any effectively propositional formula into an equisatisfiable

clausal formula. The translation is linear, both in time and in the size of its

output, and similar to the propositional case works by replacing complex subfor-

mulae by atoms built with fresh new predicates. In fact, the same Algorithm 2.1

can be used first to translate an effectively propositional formula into negation

normal form. Then the following version of Tseitin’s translation for effectively

propositional formulae is applied.
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Algorithm 4.1 (Tseitin’s clausal form translation). Let G be a formula in nega-

tion normal form. For each subformula of the form F (x1, . . . , xk) introduce a new

predicate symbol pF of arity k and also let F̂ be the atom pF (x1, . . . , xk). Then

let ∆G be a set containing, for each subformula F = A∧B, the pair of constraints

F̂ → Â

F̂ → B̂

and, for each subformula F = A ∨B, the constraint

F̂ → Â ∨ B̂ .

The algorithm produces as output the set of constraints ∆G ∪ {Ĝ}.

The following theorem, whose proof is completely analogous to the proposi-

tional case, establishes the correctness of Tseitin’s translation.

Theorem 4.1. Let F be an effectively propositional formula. The formula F and

the set of constraints ∆F ∪ {F̂} are equisatisfiable.

Although there are methods such as analytic tableaux (Hähnle, 2001) which

work on formulae with arbitrary structure, a great deal of theory and implemen-

tation techniques have been developed to work with formula written in a clausal

normal form. In the following sections we will briefly survey some methods which

have been proposed to check the satisfiability of effectively propositional formulae.

4.2 Grounding-based methods

As a consequence of Herbrand’s theorem (see e.g. Fitting, 1996), checking the

satisfiability of effectively propositional formula can be reduced to the problem

of propositional satisfiability. Formally, we have the following statement.

Theorem 4.2 (Herbrand’s theorem). Let F be a formula in clausal normal form.

The formula F is unsatisfiable if and only if there is an unsatisfiable set G con-

taining only ground instances of clauses in F .

Since the number of constant symbols is finite, the number of ground terms

as well as the number of ground instances of an effectively propositional clause is

finite. One can actually, in the most naive approach, replace F by the set con-

taining all the ground instances of clauses in F . Such set can then be interpreted
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as a set of propositional clauses and fed to a propositional satisfiability solver in

order to determine the satisfiability of F .

This naive approach, however, often does not tend to scale. The size of

the generated propositional problem is in general exponential in the size of the

original EPR representation since, given a clause with k variables and a domain D
with n constant symbols, the clause has a total of nk different ground instances.

Researchers have therefore explored many ways to reduce the number of generated

clauses while still preserving the satisfiability of the original formula. While many

of these ideas have been developed to deal even with more general classes of

formulae such as first-order logic, our discussion will be restricted to the effectively

propositional case.

4.2.1 Splitting

One technique to reduce the number of generated instances is to split clauses into

components which are then grounded into fewer instances (Schulz, 2002; Claessen

and Sörensson, 2003). Suppose that a clause is written in the form C(x̄) ∨D(ȳ)

where both C and D are subclauses with respective variables x̄ = x1, . . . , xk and

ȳ = y1, . . . , yk′ . Also let x̄ ∩ ȳ denote a sequence containing the variables that

occur both in x̄ and ȳ. This clause is then equivalent to the pair of constraints

C(x̄) ∨ p(x̄ ∩ ȳ)
¬p(x̄ ∩ ȳ) ∨D(ȳ)

where p is a fresh new predicate symbol of the appropriate arity.

If there is a variable which appears in x̄ and not in ȳ, and vice versa, then

the generated constraints have less literals per clause and, therefore, less ground

instances. Moreover, after a clause has been split, it is sometimes possible to

further split the newly generated clauses. However, since different sequences

of splits can yield a number of different outcomes, this opens up the problem

of finding a strategy to apply splits in a way that reduces the final number of

variables per clause as much as possible.

Finding an optimal sequence of splits has turned out to be a rather difficult

problem, and often one prefers to implement a cheap although imperfect solution.

A first heuristic, proposed by Schulz (2002) and implemented in eground, enu-

merates all possible subsets (small ones first) that contain only variables from the

original clause. For each such subset V , it is checked in a linear time operation
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whether the clause can be split so that variables in the intersection are exactly

those in V . If this is possible, then the split is performed and the whole process

iterated. Otherwise, since the number of subsets is exponential, the algorithm

gives up after trying some fixed amount of checks.

An alternative approach, proposed by Claessen and Sörensson (2003) and im-

plemented in Paradox, checks first which variables are connected in the clause.

It is said that a pair of variables is connected if there is a literal in the clause in

which both of them appear. Then the variable which is connected to the least

number of other variables, say x, is selected. All literals containing x are then

moved to left hand side of the split, and the remaining to the right. The proce-

dure is then iterated but on the right hand side only; since all literals in the left

contain x, it cannot be further split. This splitting heuristic runs in polynomial

time and, moreover, is guaranteed to always find a split if one is possible.

4.2.2 Pure predicates

If all the occurrences of a predicate symbol are always in literals of the same phase,

i.e. either always positive or always negative, then it is said that the predicate is

pure, and all clauses where this pure predicate appears can be removed without

altering the satisfiability of the formula. This is justified since any model of the

original set of clauses is also a model of the reduced one. And it is easy to extend

any model of the reduced set in a sensible way so that it becomes a model of

the original formula; e.g. if the pure predicate always appears in positive literals,

then extend the interpretation so that it evaluates all ground atoms containing

this predicate symbol to true.

This reduction is also well know in the propositional case, where it was origi-

nally suggested by Davis et al. (1962) to be applied in the main loop of the DLL

algorithm. The idea was, however, later abandoned since it becomes too expen-

sive to keep track of literal counts on each phase in order to quickly detect the

ones that become pure. On the other hand, in the case of effectively propositional

logic, it is enough to perform it once as a preprocessing step, and can be of a great

help to reduce the number of instances to be generated later. Recent versions of

Paradox implement exactly this strategy.
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4.2.3 Linking restrictions

Notice that, in a sense, the simplification described in the previous section is just

a very rough lifting of the pure literals reduction from the propositional to the

effectively propositional level. Suppose that, for some binary predicate symbol p,

all its positive occurrences are instances of the literal p(a, x), while all its negative

occurrences are instances of ¬p(x, b), where a and b are constant symbols. Since

the predicate occurs in literals in both phases, p is not pure. However, while

generating ground clauses during the instantiation process, all ground literals of

the form p(a, c), where c is a constant symbol different from b, will be pure in

the propositional sense, because all negative instances of this predicate have a b

in the second argument. In fact, only literals containing the atom p(a, b) will not

be pure after grounding.

Linking restrictions are another approach to reduce the number of ground

clauses created at instantiation by trying to avoid, as much as possible, the gen-

eration of pure literals in the resulting set of propositional clauses. The following

definition introduces some useful notation that will be helpful to later define some

examples of linking restrictions.

Definition 4.4. Let F be a clausal formula, and let s be a signed predicate

symbol of arity n. The set Ts of n-tuples of terms is defined as

Ts = {(t1, . . . , tn) | the literal s(t1, . . . , tn) occurs in F} .

Also, given an integer 1 ≤ i ≤ k, we define the set of terms Ts.i as the i-th

projection of tuples in Ts, i.e.

Ts.i = {ti | (t1, . . . , tn) ∈ Ts} . �

The following restriction, which we call complete linking and is based on the

hyper-linking approach from Lee and Plaisted (1992), gives a very general linking

restriction to limit the generation of clauses during instantiation.

Algorithm 4.2 (Complete linking). During the instantiation process, discard all

clauses that contain a literal of the form s(c1, . . . , cn) unless the tuple (c1, . . . , cn)

is an instance of some tuple in Ts̃.

Although we are not aware of any modern prover implementing the complete

linking restriction as described here, we do discuss later a possible efficient im-
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plementation in Section 7.1.1. Another possible approach is a linking restriction

proposed by Schulz (2002), under the name of structural constraints, and imple-

mented in eground as a cheaper alternative to complete linking.

Algorithm 4.3 (Positional linking). Let s be a signed predicate symbol with an

arity of n, and let 1 ≤ i ≤ n. We define the set of constant symbols Cs.i = Ts.i if

there are no variables in Ts.i, or Cs.i = D otherwise.

During the instantiation process, discard all clauses that contain a literal of

the form s(c1, . . . , cn) unless, for every 1 ≤ i ≤ n, the constant symbol ci ∈ Cs̃.i.

We call this positional linking since it restricts grounding by information col-

lected independently for each position in the list of arguments of literals.

4.2.4 Sort inference

The use of sorts was proposed by Claessen and Sörensson (2003) as an alternative

to the linking restrictions of eground. Nevertheless, as we will see later in Sec-

tion 7.1.1, both approaches are orthogonal and can even be used simultaneously.

The idea behind this approach is that often, when encoding problems from

real-world applications, constant symbols are used to represent different ‘con-

cepts’ or ‘sorts’ of the original application. For example, in a problem domain

involving students taking courses, an atom takesCourse(x, y) can be used where

the variable x stands for a student name, while y stands for a subject. Nonethe-

less, when the problem is encoded as an effectively propositional formula, both

variables are implicitly quantified over a single unified pool D of constant sym-

bols. By reducing the instantiation of variables only to their appropriate sorts,

one hopes to reduce the number of generated clauses, as well as simplify both the

search of models and the interpretation of the models found (i.e. avoid models

asserting facts such as takesCourse(logic, french) or other nonsense). The following

definition formally introduces the notion of sorts that we will use in the context

of effectively propositional formulae.

Definition 4.5. Given a predicate symbol p of arity n and positive integer i,

with 1 ≤ i ≤ n, a predicate position is an expression of the form p.i. Then a

sort assignment A is a function that maps each predicate position p.i to a set of

constant symbols Ap.i ⊆ D. Each set Ap.i is also known as a sort.

Moreover, a clause C is said to be compatible with a sort assignment A if

for every term t appearing at some predicate position p.i, the term t is either a
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constant symbol in Ap.i or, if it is a variable x, then all other occurrences of x in

the clause also have the sort Ap.i. A set of clauses is compatible with a sort A, if

all its clauses are compatible with A.

Given a clausal formula F and a sort assignment A, we will use F |A to denote

the set of all ground instances of clauses in F which are compatible with A. �

An interesting property of sort assignments is that, when they are compatible

with a formula, then the instantiation process can be reduced to those ground

instances which are compatible with the sort assignment. More formally, we have

the following theorem.

Theorem 4.3. Let F be a clausal formula, and let A be a sort assignment com-

patible with F . The formulae F and F |A are equisatisfiable.

Proof. Recall that, by definition, an interpretation I is a model of an effectively

propositional clause C iff I is a model of every ground instance of C. From this

it directly follows that any model of F is also a model of F |A.

For the converse suppose that I is a model of F |A. Also, for each sort of

the form Ap.i, let [Ap.i] be some distinguished fixed symbol in the set Ap.i. Then

define the interpretation I ′ such that

I ′ |= p(c1, . . . , cn) iff I |= p(ĉ1, . . . , ĉn) ,

where each

ĉi =

ci if ci ∈ Ap.i ,

[Ap.i] otherwise .

We will show that I ′ is a model of F . For this take any clause C in F , and let

Cσ be one of its ground instances. Now, define a new substitution σ′ such that,

for every variable x in the domain of σ,

xσ′ =

xσ if xσ ∈ Ax ,

[Ax] otherwise ,

where Ax is the sort of the position where the variable x occurs in the clause.

This is well defined since, because of the sort assignment being compatible with

the formula F , all occurrences of x should have the same sort. Also note that,

by construction, the ground clause Cσ′ is compatible with A and, by hypothesis,
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I |= Cσ′. But, from the construction of the interpretation I ′, we know that this

is the case only if I ′ |= Cσ. Since Cσ was an arbitrary ground instance of an

arbitrary clause in F , it follows that I ′ |= F . �

As a consequence of this theorem, sort assignments are very helpful to reduce

the number of generated instances in a grounding approach. It is however often

the case that this sort of information is not explicitly given in most existing

benchmarks such as, for example, those available at the TPTP problem library

(Sutcliffe and Suttner, 1998). A simple method, however, can be used to extract

sort information from a previously unsorted formula. The following procedure,

which is based on the sort inference as proposed by Claessen and Sörensson (2003)

and implemented in Paradox, builds a sort assignment which is compatible with

the given input formula.

Algorithm 4.4 (Sort inference). Given an effectively propositional formula as

input, initially create a sort assignment giving unrelated empty sorts to each

predicate position.

Processing one clause at a time, and as a union-find algorithm: for each

variable in the clause, merge the sorts assigned to all predicate positions where

that variable occurs; and, for each constant symbol, add the constant symbol to

the sort assigned to the predicate position where it appears.

Finally, add a dummy constant symbol to any sort that still remained empty

at the end of this procedure.

From this description it easily follows, as Claessen and Sörensson (2003) point

out, that the sort assignment produced by this algorithm is compatible with the

given input formula and, from Theorem 4.3, that it is also valid in the sense of

the following formal statement.

Theorem 4.4. Let F be a clausal formula, and let A be the result of applying

the sort inference algorithm to F . The formulae F and F |A are equisatisfiable.

Although in this section we only explored the usefulness of sort inference in the

context of an instantiation-based approach, we will also see later in Section 7.2.2

how it is also possible to couple sort assignments with reasoning mechanisms that

work at a higher levels of abstraction.
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4.2.5 Incremental search

A problem with the grounding approach as has been presented so far is that,

when the domain of the problem is large, it is easy to run out of time or space

resources even before attempting to do any search of models. A very simple

approach, implemented for example in eground, is to try and build at least

one instance of every clause before running out of resources. The resulting set of

clauses is not equisatisfiable with the original formula anymore, but if one is lucky

enough to prove that the set is unsatisfiable then, by Theorem 4.2, the original

formula also is.

A more elaborated approach can, for example, successively create instances

of clauses of the input formula and run satisfiability checks from time to time.

If, at some point, the unsatisfiability of the generated set of ground clauses is

established, then the procedure stops declaring the input formula unsatisfiable.

Otherwise, if a model is found, more ground instances are created, perhaps using

the information provided by model as a guide, and the procedure is iterated.

Variants of this kind of procedures have been proposed by Lee and Plaisted

(1992), Plaisted and Zhu (2000), and Hooker et al. (2002). Moreover, the ap-

proach also allows a tighter integration and interleaving of propositional methods

with other more general forms of reasoning. Combinations of tableaux related

techniques with propositional satisfiability checking have been proposed by re-

searchers such as Billon (1996), Letz and Stenz (2001). Fuchs (2004), as well

as Korovin (2006) have also implemented combinations of first-order reasoning

with instantiation in, respectively, the Darwin and iProver systems; currently

two of the leading effectively propositional provers at the CADE ATP System

Competition (Sutcliffe, 2007). The later Section 4.3 describes in a bit more detail

these approaches.

Another kind of incremental approach proposed by McCune (1994a), and

also implemented by Claessen and Sörensson (2003) in the Paradox system, is

known as MACE-style model finding. In the context of an effectively propositional

formulae, this technique works by noting that it is often enough to search for

models in domains with a reduced number of constant symbols. Formally, we

have the following statements.

Definition 4.6. Let D′ be a set of constant symbols and let π : D → D′ be a

function that maps symbols from one domain to the other. Given an effectively

propositional clausal formula F , let π(F ) be the formula obtained after replacing
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every constant symbol c in F with the corresponding π(c).

If the clausal formula π(F ) is satisfiable, we say that F has a model of size n,

where n is the number of elements in D′. �

Theorem 4.5. Let F be an effectively propositional clausal formula and n a

positive integer. If F has a model of size n, then F is satisfiable.

Moreover, Claessen and Sörensson (2003) show how to build, given an input

formula F , a set of propositional clauses Gi which are satisfiable if and only if

the formula F has a model of size i. One can therefore incrementally test the

satisfiability of each set G1, . . . , Gn, where n is the number of constant symbols

originally in F . If at some point one finds a satisfiable set Gi then the procedure

stops and reports the satisfiability of F . If it turns out that even Gn is unsatis-

fiable, then F is also unsatisfiable (just let π be the identity function), and the

search is also stopped.

Note however that, when the satisfiability solver if searching for a solution

of the set Gi, it has to guess not only truth values for each ground atom in

the reduced domain, but also the mapping π used to actually reduce it. This

introduces many symmetries in the search space, some of which can be eliminated

by throwing in even more clauses into the encoding of Gi. Nevertheless, since

there are a lot of similarities between each set Gi and Gi+1 —many clauses in the

later were already present in the former— a satisfiability solver with an interface

for incremental search can be used to reuse information and increase the speed

of individual satisfiability checks.

The approach is often useful for satisfiable problems when n, the original

number of constant symbols, is very large and a model with a shorter domain size

is easy to find. On the other hand, for unsatisfiable problems, this has the effect of

introducing a heavy and unnecessary overhead: it is easier and more efficient just

to directly check the satisfiability of F instead of all the sets G1, . . . , Gn. Later

in Section 7.1.2 we will revisit this issue and compare the incremental against

a one-shot approach which directly tries to check the satisfiability of the input

formula without reducing the domain.

Finally, another advantage of incremental search as implemented in Paradox

is that it allows one to use the instantiation approach not only on effectively

propositional formulae, but on arbitrary first-order logic as well. This is not

possible in general if one uses a one-shot approach.
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4.3 Non-ground reasoning methods

In the previous section we have briefly described many techniques to reduce the

satisfiability problem from effectively to plain propositional logic. In doing so it

becomes easy to import years of research and existing software implementations,

such as all those described in Chapter 2, very easily into the field of effectively

propositional logic. Nevertheless, one is still constrained by the inefficiency of the

propositional language to succinctly represent problems and, sooner or later, one

runs out of resources after having generated so many ground clauses.

We will now look at alternative solving approaches that do not necessarily

resort to a grounding process. Instead, reasoning methods are developed which

perform inferences at the more general effectively propositional level. In partic-

ular, we will briefly introduce three different logical calculi. The first of them,

resolution, is one of the major cornerstones in automated reasoning that was de-

veloped for reasoning with first-order logic. The later two are the model evolution

and instantiation calculi, which have been especially successful in the effectively

propositional arena.

4.3.1 Resolution calculus

Before dwelling into notion of resolution and its applicability to reasoning with

effectively propositional formulae, we will first introduce some concepts and no-

tations about formal proof systems in general. This will be useful not only for

explaining resolution, but also the calculi in following sections and material in

the later Chapter 7.

Definition 4.7. In general, an inference rule is a relation among clauses. Given

a tuple (C1, . . . , Cm, C) in such a relation, more often written as

C1 · · · Cn
C

,

we say that C1, . . . , Cn are the premises of the inference, and that C follows from,

or is a direct consequence of, its premises.

Given a set of clauses S, a proof of a clause C derived from S by a set of

inference rules R, denoted by S `R C, is a sequence of clauses C1, . . . , Cm where

the last Cm = C and each Ci is either a clause in S or is a direct consequence

of some previous clauses in the sequence by an inference rule in R. If clear by
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context, we will often omit the subscript R in the proves relation. Moreover, we

say that m is the length of the proof while its size is the sum of the sizes of all

clauses in the sequence.

A refutation of a set of clauses S is a proof of the empty clause derived from S.

A set of inference rules is refutationally sound if, whenever S accepts a refutation,

the set S is unsatisfiable; and is refutationally complete if, whenever the set S is

unsatisfiable, there is a refutation of S. �

We will now formally introduce the inference rule of resolution which was

originally proposed by Robinson (1965) and, as we have observed before, has

been one of the main foundations in the research of automated reasoning and

theorem proving.

Definition 4.8. The inference rule of binary resolution with factoring, later sim-

ply referred to as resolution, is defined as

C ∨ A1 ∨ · · · ∨ Ak ¬A ∨D
Cσ ∨Dσ

Res

where σ is the most general unifier such that A1σ = · · · = Akσ = Aiσ. �

The inference system of resolution is both refutationally sound and complete

and, when equipped with orders and selection functions, can be turned into a

semi-decision procedure for first-order logic by a process of saturation (see e.g.

Bachmair and Ganzinger, 2001). Systems such as spass by Weidenbach et al.

(1996), Otter by McCune and Wos (1997), and Vampire by Riazanov and

Voronkov (2002), implement many variations and optimisations of this resolution

calculus. Resolution-based provers were quickly found as a very successful ap-

proach for first-order theorem proving, in much the same way that for effectively

propositional logic they weren’t.

Surprisingly, as noted first by Joiner (1976), it seemed notoriously difficult

to design a decision procedure based on resolution for effectively propositional

logic, i.e. the Bernays-Schönfinkel class of formulae. And, although such proce-

dure was eventually found based on semantic clash resolution (Fermüller et al.,

1993), resolution-based methods have been found relatively ineffective even when

compared with the most simple propositional approaches (Sutcliffe et al., 2002).

As a consequence, other approaches have been devised trying to provide new

reasoning techniques which are suitable for effectively propositional logic without

having to resort to a full instantiation process.
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4.3.2 Model evolution calculus

The model evolution calculus is an attempt to lift the main components of the

DLL algorithm, which as we saw in Chapter 2 has been very successful in the

propositional setting, to the effectively propositional and first-order level. The

first step towards this direction was given by Baumgartner (2000) who proposed,

in his FDPLL calculus, an extension of the splitting rule in order to be directly

applied to first-order formulae without grounding.

Based on those early ideas, Baumgartner and Tinelli (2003) developed later

the model evolution calculus incorporating first-order versions of the splitting and

unit propagation inference rules, being the later a key component on the success

of DLL. Moreover, in the same way that DLL is able to provide a model of the

input formula whenever the formula is satisfiable, the model evolution calculus is

also able to import this model generation process to the first-order case.

In order to do this, the calculus maintains a structure Λ, a finite set of pos-

sibly non-ground literals, known as a context. The context implicitly defines an

interpretation IΛ as a candidate model for the input clausal formula F . Initially,

the search starts with a default context Λ0 whose corresponding interpretation

assigns all ground atoms to false. While IΛ is not a model of F , the several

inference rules of the calculus are then used to evolve the context Λ so that it

becomes one. The search continues until either a model is found, or IΛ becomes

irreparable and therefore F is unsatisfiable.

For first-order formulae the calculus is refutationally sound and complete,

as well as a semi-decision procedure for testing unsatisfiability. Moreover, the

calculus is terminating for effectively propositional logic and, therefore, it also is

a decision procedure for the Bernays-Schönfinkel class of formulae.

This calculus has been implemented by Fuchs (2004) in the Darwin system,

with more implementation details also given by Baumgartner et al. (2005), and

has been found particularly successful in solving effectively propositional problems

since its first participation at the 20th instalment of the the CADE ATP System

Competition (Sutcliffe, 2006).

4.3.3 Instantiation calculus

The instantiation calculus, originally proposed by Ganzinger and Korovin (2003),

is a competing approach that interleaves propositional satisfiability checks with
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first-order inferences based on unification. The main inference rule of the cal-

culus, similar to resolution, unifies complementary literals in a pair of clauses

but, instead of the resolvent of the two clauses, instances of each clause using the

appropriate unifier are generated.

Definition 4.9. The inference rule of binary instance generation is defined as

C ∨ A ¬A′ ∨D
Cσ ∨ Aσ ¬A′σ ∨Dσ

InstGen

where σ is a proper most general unifier such that Aσ = A′σ. �

The procedure works by maintaining a set of clauses S, originally the set

of input clauses, and interleaving propositional reasoning with applications of

instance generation. First a propositional set of clauses S↓ is built, where ↓ is the

constant substitution that maps all variables in S to some distinguished constant

symbol. The set S↓ is sent to a propositional satisfiability solver and, if it is

proved unsatisfiable, then the input formula is also unsatisfiable. Otherwise, if

the satisfiability solver finds a propositional model I; this interpretation is used

to select some literals on clauses on which to apply instance generation inferences

which, at the same time, helps to (implicitly) build an interpretation IS as a

candidate model for S. If no new clauses can be generated then satisfiability of

S is detected being IS one of its models. Otherwise the new clauses are added

to the set S and the process is iterated.

This process is a semi-decision procedure for first-order logic, and a decision

procedure for effectively propositional formulae. This follows from the fact that,

as Ganzinger and Korovin (2003) proved, if the set S is saturated using instance

generation, then it is possible to determine the satisfiability of S from the propo-

sitional satisfiability of S↓. Formally, we have the following statement.

Theorem 4.6. Let S be a set of clauses closed under instance generation. The

sets of clauses S and S↓ are equisatisfiable.

Their proof, moreover, shows that given a model I of the propositional set

of clauses S↓, the induced interpretation IS is a model of the saturated set S.

Korovin (2006) also implemented this calculus in the iProver system, using

a saturation strategy based on the given-clause algorithm (McCune, 1994b), a

procedure commonly found in resolution theorem provers. Additional simplifi-

cations, which detect and eliminate redundancies based on resolution and other
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approaches, made iProver a successful contestant in the EPR category of the

latest CADE ATP System Competitions (Sutcliffe, 2007).

4.4 Finite domain predicate logic

In the previous section we introduced both the syntax and semantics of effectively

propositional logic, which is the main focus of this thesis. As we have already

argued, this language is much more concise than propositional encodings and also

clearer for humans to read and understand. Nevertheless, the language often lacks

of a few constructs which are commonly used in applications such as functions

and quantifiers.

Function symbols and quantifiers are, of course, what distinguishes effectively

propositional formulae from first-order logic. But it turns out, however, that if

one limits the logic to a fixed finite domain, then it is still possible to reduce the

resulting logic to the effectively propositional case.

In this section we introduce the finite domain predicate logic. This is a sorted

logic which allows the use of function symbols, quantification and even equality.

Then, we will also show how to reduce formulae in this logic to the effectively

propositional case as introduced first in Section 4.1. The added syntactic sugar

will be useful in later chapters to describe the encodings of applications in a more

natural fashion.

Definition 4.10. The language of finite domain predicate logic consists of a

number of non-empty disjoint sets of constant symbols, which we denote by sans-

serif uppercase letters: A, B, . . . . Each of these sets is also known as a sort. It also

also has a set of predicate symbols P and a set of function symbols F . Moreover,

each predicate and function symbol is associated with a signature, which for a

predicate symbol is an expression of the form A1 × · · · × An and for a function

symbol of the form A1×· · ·×An → A. In either case n is the arity of the symbol.

For each sort we also have an infinite supply of variables which are denoted,

as usual, by the letters x, y, . . . . Terms are defined inductively as follows: an

expression t is a term of sort A if

• t is a variable of sort A.

• t is a constant symbol in A.
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• t is an expression of the form f(t1, . . . , tn), where f is a function symbol

with signature A1 × · · · × An → A and each ti is a term of sort Ai.

A predicate atom is an expression of the form p(t1, . . . , tn) where p is a predicate

symbol with signature A1 × · · · × An and each ti is a term of sort Ai. And an

equality atom is an expression of the form t1 = t2 where both t1 and t2 are terms

of the same sort. An atom is either a predicate atom or an equality atom.

Using atoms as basic building blocks, we construct formulae by using the the

primitive connectives of falsity (⊥), negation (¬F ), conjunction (F ∧ G) and

quantification (∀x. F ); where F and G are formulae, and x is a variable. Duals

of these operators and additional connectives are introduced as abbreviations:

> ≡ ¬⊥ ∃x. F ≡ ¬(∀x.¬F )

F ∨G ≡ ¬(¬F ∧ ¬G) F →G ≡ ¬F ∨G

The standard notion of free and bound variables with respect to the scope of

quantifiers also applies here. A closed formula is a formula with no free variables.

We will often use x̄ to denote a sequence of variables x1, . . . , xn whose length is

specified in the context where it is used. This allows, for example, to write ∃x̄. F
instead of the longer expression ∃x1. . . .∃xn. F . Similarly we will write x̄ = ȳ as

a shorthand for
∧n
i=1 xi = yi. �

A constraint is just an alternative name for a formula. A clause is special

kind of constraint which is just a disjunction of literals, and a formula is said to

be in clausal normal form if it is a set of clauses.

Definition 4.11. An interpretation for a finite domain predicate logic is a struc-

ture which assigns:

• for each predicate symbol p a relation pI ⊆ A1 × · · · × An, and

• for each function symbol f a function fI : A1 × · · · × An → A,

according to the signature associated with the corresponding symbol. Also, a

variable mapping σ is a function that maps variables to constant symbols of the

appropriate sort. We also say that σ′ is an x-variant of σ if they differ, at most,

in their valuation for the variable x.

The interpretation of a term t with respect to an interpretation I and a

variable mapping σ, denoted by tI,σ, is a constant symbol computed as follows:
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• if t is a variable, then tI,σ = σ(t),

• if t is a constant symbol, then tI,σ = t,

• if t is an expression f(t1, . . . , tn), then tI,σ = fI(tI,σ1 , . . . , tI,σn ).

We will now define when an interpretation I and a variable mapping σ satisfies

a formula F , denoted I |=σ F , recursively as follows:

I 6|=σ ⊥
I |=σ p(t1, . . . , tn) iff (tI,σ1 , . . . , tI,σn ) ∈ pI ,
I |=σ t1 = t2 iff tI,σ1 is equal to tI,σ2 ,

I |=σ ¬F iff I 6|=σ F,

I |=σ F ∧G iff I |=σ F and I |=σ G,

I |=σ ∀x. F iff I |=σ′ F for every σ′ which is an x-variant of σ,

An interpretation I is a model of a finite domain predicate formula F and is

denoted by I |= F if, for every variable mapping σ, we have that I |=σ F . We

also say that I is a model of a set of formulae, also known as a set of constraints,

if I is a model of every constraint in the set. A set of constraints is said to be

satisfiable if it has at least one model. �

Observe that the semantics of equality, as introduced in the previous defi-

nition, is evaluated syntactically, i.e. using the unique name assumption, with

respect to the names of constant symbols after the terms on each side of the

equal sign have been evaluated under the current interpretation I and variable

mapping σ. In particular note that constant symbols evaluate to themselves and,

therefore, the equality or inequality of constant symbols does not actually depend

on the interpretation I.

Negation normal form As with other logics, in order to simplify the exposi-

tion and avoid dealing with the polarity of subformulae, we assume that formulae

are put first in negation normal form. It is easy to achieve this by pushing nega-

tion inwards and replacing implications with disjunctions. The resulting logical

formulae will therefore use any of the connectives: ⊥,>,∧,∨,∀,∃; and negation

is restricted to occur only in literals.

Algorithm 4.5 (Negation normal form translation). The rewrite rule system on

formulae of Figure 4.1 gives an algorithm to translate arbitrary finite domain
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¬⊥ ⇒ > ¬> ⇒ ⊥
¬(F ∧G) ⇒ (¬F ∨ ¬G) ¬(F ∨G) ⇒ (¬F ∧ ¬G)

¬(∀x. F ) ⇒ (∃x.¬F ) ¬(∃x. F ) ⇒ (∀x.¬F )

¬¬A ⇒ A

Figure 4.1: Rewrite rules for negation normal form translation

predicate formulae into a negation normal form representation. Given an input

formula, the algorithm simply applies the rewrite rules in a nondeterministic

manner until a negation normal form is obtained.

The reader can easily verify that this algorithm produces a formula in negation

normal form which is equivalent to its input. In the following we will assume that

all formulae are in negation normal form.

Quantification Note that quantification of variables is done with respect to

finite sorts, so that a formula ∀x. F (x) can actually be unfolded into the conjunc-

tion F (c1) ∧ · · · ∧ F (ck), where A = {c1, . . . , ck} is the corresponding sort of the

variable x. Nevertheless, naively unfolding quantifiers in this way will potentially

produce an exponential blowup in the size of the formula. We therefore now intro-

duce an alternative approach which, following the style of Tseitin’s translations

discussed in previous chapters, only incurs in a linear size increase.

Definition 4.12. We define the set of constraints Sorts as the set that contains,

for every sort A = {c1, . . . , ck} in a finite domain predicate logic, the constraints:

firstA(c1) ∧ succA(c1, c2) ∧ · · · ∧ succA(ck−1, ck) ∧ lastA(ck)

succA(x, y)→ inA(x) ∧ inA(y)

where succA, firstA, lastA, and inA are fresh new predicate symbols, the first of

them with signature A× A and the rest with signature A. �

The intuition behind the constraints in Sorts is to enumerate all constant

symbols in a sort A by providing a predicate succA that allows one to iterate over

them, while the predicates firstA and lastA can be used to determine the bounds

of this sequence. The intended meaning of inA(x) is to represent that x ∈ A. Note

that Sorts defines only the positive polarity of these predicate symbols. In other
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words, if ci ∈ A then the predicate inA(ci) should be true in models of Sorts, but

the converse does not necessarily have to hold.

Algorithm 4.6 (Quantifier removal translation). Let Γ be a set of constraints.

The set Γea is defined as the result of iterating the following procedure until all

quantifiers in Γ have been removed.

• If there is a subformula F = ∀x.G(x, ȳ), where x, ȳ are all the free variables

in G, then replace the subformula F with the atom forallF (ȳ) and add the

constraint:

inA(x) ∧ forallF (ȳ)→G(x, ȳ)

where A is the sort of x and forallF is a fresh new predicate symbol whose

signature matches the sorts of the ȳ variables.

• Similarly, replace a subformula of the form F = ∃x.G(x, ȳ) with the atom

existsF (ȳ) and add the constraints:

firstA(x) ∧ existsF (ȳ)→ findF (x, ȳ)

findF (x, ȳ)→G(x, ȳ) ∨ xfindF (x, ȳ)

succA(x, z) ∧ xfindF (x, ȳ)→ findF (z, ȳ)

lastA(x) ∧ xfindF (x, ȳ)→⊥

where A is the sort of x and existsF , findF , xfindF are fresh new predicate

symbols with appropriate signatures.

Theorem 4.7. The sets of constraints Γ and Sorts ∪ Γea are equisatisfiable.

Proof. The argument is similar to the one used in structural clausal form trans-

lations where subformulae are replaced by fresh new atoms and constraints are

added to give a meaning to those atoms.

In particular it can be shown that, if F = ∀x.G(x, ȳ) and a given interpre-

tation I is a model of Sorts ∪ {F}ea ∪ {forallF (ȳ)}, then I is also a model of

F . And, for the converse, that if I |= F then it is always possible to find an

interpretation I ′ such that I ′ |= Sorts ∪ {F}ea ∪ {forallF (ȳ)}. The case for the

existential quantifier is also analogous. �
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After Algorithm 4.6 has been applied to to soak existentials and remove all

quantifiers, a standard translation such as the one by Plaisted and Greenbaum

(1986) can be applied to obtain a set of constraints in clausal normal form. In

the following we will assume that formulae are always put in clausal normal form,

although function symbols and equality are still allowed to appear anywhere in

the literals of clauses.

Flattening A first step in order to remove function symbols is to employ the

process known as flattening. This allows one to unfold the nesting of terms in

order to more easily remove them in the later steps.

Definition 4.13. A term is shallow if it is either a variable or a constant symbol,

and an atom is shallow if it is either of the form:

• p(t1, . . . , tn),

• f(t1, . . . , tn) = t, or

• t1 = t2,

where all terms ti and t are shallow. �

The following algorithm is used to flatten a clause by making all terms shallow.

Algorithm 4.7 (Clause flattening algorithm). Given an input clause C iterate

the following procedure until all atoms are shallow: If there is a subterm t in C

which is not shallow then:

• Replace all occurrences of t in C with a new variable x of the same sort.

• Replace C with t 6= x ∨ C.

It is easy to see that the output clause of the previous algorithm is logically

equivalent to its input. Moreover, if it is iteratively applied to all the clauses in

a set Γ to obtain another set Γ′ all whose atoms are shallow, then Γ and Γ′ are

also equivalent.

http://xkcd.com/220/
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Function symbols On a flattened formula it is now easy to remove function

symbols by replacing them with new predicate symbols.

Definition 4.14. Let Functs be a set that contains, for every function symbol f

of signature A1×· · ·×An → A in a finite domain predicate logic, the constraints:

∃y. f̂(x1, . . . , xn, y)

f̂(x1, . . . , xn, y) ∧ f̂(x1, . . . , xn, z)→ y = z

where f̂ is a fresh new predicate symbol with a sort of A1 × · · · × An × A. �

Theorem 4.8. Let Γ be a set of flattened clauses, and let Γfn be the set obtained

after replacing all shallow atoms of the form f(t1, . . . , tn) = t with f̂(t1, . . . , tn, t).

The sets Γ and Γ′ = Sorts∪Functsea∪Γfn are equisatisfiable. Moreover, Γ′ is a set

of flattened clauses that does not contain neither function symbols nor quantifiers.

Proof. The result easily follows by the observation that, if I is a model of Functs,

then the relation assigned to a predicate symbol f̂I must actually be a function.

Using this observation, it is easy to build an interpretation I ′ which behaves on

the function symbol f as I behaves on the predicate symbol f̂ and, therefore,

transfer models between Γ and Γ′. �

Equality After removing function symbols and quantifiers, we only have left to

remove equality.

Definition 4.15. The set Equals is defined as the set containing, for every sort

A in a finite domain predicate logic, the constraints:

succA(x, y)→ lessA(x, y)

lessA(x, y) ∧ lessA(y, z)→ lessA(x, z)

lessA(x, y)→¬eqA(x, y) ∧ ¬eqA(y, x)

eqA(x, x)

where lessA and eqA are fresh new predicate symbols with a signature of A×A. �

Theorem 4.9. Let Γ be a set of flattened clauses, and let Γeq be the set obtained

after replacing all shallow atoms of the form t1 = t2 with eqA(t1, t2) for the ap-

propriate sort A. The sets Γ and Γ′ = Sorts ∪ Equals ∪ Γeq are equisatisfiable.

Moreover, Γ′ is a set of flattened clauses that does not contain equality.
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Proof. The result easily follows by the observation that, if an interpretation I is

a model of Equals ∪ {eqA(t1, t2)} then it is also the case that I |= t1 = t2. From

this observation it is then possible to transfer models between Γ and Γ′. �

As a result of Algorithms 4.5, 4.6, and 4.7 together with the translation of

Plaisted and Greenbaum (1986), as well as Theorems 4.8 and 4.9, one can trans-

late any arbitrary finite domain predicate formulae into a set of clauses without

any quantification, function symbols or equality. Syntactically, this corresponds

exactly with the effectively propositional formulae as defined in Section 4.1. How-

ever, since the generated formulae still have to be evaluated taking into account

the sort information, semantically the two classes of formulae are different. The

following theorem will, therefore, fill in the remaining gap.

Theorem 4.10. Let F be a set of plain clauses written in the language of a finite

domain predicate logic. The set F has a finite domain predicate model if and only

if it has an effectively propositional model.

Proof. It actually follows from Theorem 4.3, since interpreting F with respect

to the finite domain predicate logic, is equivalent to checking the satisfiability of

the ground instances F |A in effectively propositional logic, where A encodes the

original sort information of the logic. �

Moreover, the resulting formula is of linear size with respect to the original

input. In the following we will then freely use equality and finite quantification

knowing that they do not add any complexity to the logic.

4.5 Chapter summary

In this chapter we have introduced the syntax and semantics of effectively propo-

sitional logic. This is a fragment of first-order logic which, we argue, is a better

alternative, compared to propositional logic, both to encode and solve problems

derived from applications.

Although the use of effectively propositional language, also known in litera-

ture as the Bernays-Schönfinkel class of formulae, is rather new in the automated

reasoning community; there already are some theoretical foundations and imple-

mentations of systems that more efficiently deal with this particular logic. The

central sections of this chapter give a quick overview on the state of the art of

such technologies and existing reasoning methods.
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Finally, we also introduced the finite domain predicate logic, which corre-

sponds to a syntactic sugar placed on top of the effectively propositional language.

Therefore, it still remains as a decidable fragment of first-order logic with features

such as equality, function symbols and finite quantification. The motivation for

developing such a logic is that it enables us to succinctly and naturally encode

problems from applications, as we will do in the following Chapters 5 and 6.



Chapter 5

Encoding LTL bounded model

checking

Model checking is a technique suitable for verifying that a hardware or software

component works according to some formally specified expected behaviour. This

is usually done by building a description of the system, often modelled as a finite

state machine in a formal language suitable for further deployment, and using a

temporal logic to specify the properties that the system is expected to satisfy.

One of the first accomplishments in model checking consists in the use of sym-

bolic model checkers (McMillan, 1993), where the transition system of the finite

state machine is symbolically, rather than explicitly, represented. These symbolic

representations, which usually take the form of a binary decision diagram (BDD),

provide significant improvements over previous techniques; but some formulae are

still hard to encode succinctly using BDDs and, moreover, the encoding itself is

often highly sensitive to the variable order used to create the representation.

Another significant achievement in the state of the art of model checking

came when Biere, Cimatti, Clarke, and Zhu (1999) proposed the now widely

known technique of bounded model checking (BMC). In bounded model checking

instead of trying to prove the correctness of the given property, one searches

for counterexamples within executions of the system of a bounded length. A

propositional formula is created and a decision procedure for propositional logic,

such as DPLL (Davis et al., 1962), is used to find models which, in turn, represent

bugs in the system. When no models are found the bound is increased trying to

search for longer counterexamples.

Although this basic method is not complete, i.e. it is not able to prove proper-

109
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ties but rather just disprove them, it has been found as a useful tool to quickly find

simple bugs in systems (Biere et al., 1999; Copty et al., 2001; Strichman, 2004)

and as a good complement to other BDD-based techniques. A significant amount

of research has been spent recently on extending this technique to more expres-

sive temporal logics (Jehle et al., 2005), obtaining better propositional encodings

(Latvala et al., 2004), and proposing termination checks to regain completeness

(Prasad et al., 2005). A recent survey on the state of the art is found in the work

of Biere et al. (2006).

Bounded model checking has been largely focused on generating and solving

problems encoded in propositional logic. We observe, however, that bounded

model checking problems can also be easily and naturally encoded within the

Bernays-Schönfinkel class of formulae. One of our motivations is to obtain a new

source of problems for first-order reasoners, particularly those geared towards

the effectively propositional division (EPR) of the CASC system competitions

(Sutcliffe and Suttner, 2006).

Moreover, we believe that the EPR encoding has several advantages over the

propositional approach. First, it gives a more succinct and natural description

of both the system and the property to verify. It is not needed, for example,

to replicate copies of the temporal formula for every step of the execution trace

where it has to be checked. Furthermore, it is possible to directly translate

systems descriptions which are written in a modular way, without requiring to

flatten or expand module definitions beforehand. A prover can potentially use

this information to better organise the search for a proof or counterexamples.

On the other hand, our encoding may also turn out to be useful for propo-

sitional, satisfiability-based, approaches to bounded model checking. Indeed, it

preserves the structure of the original bounded model checking problem in the

obtained effectively propositional formula and reduces the problem of finding an

optimised propositional encoding of the model checking problem to the problem

of finding an optimised propositional instantiation of the effectively propositional

description.

After introducing a number of formal definitions in Section 5.1, we present in

Section 5.2 two different encodings of linear temporal logic (LTL) into effectively

propositional formulae. The first encoding takes as input an LTL formula and

a bound k, in order to produce a set of constraints which capture the execution

paths satisfying the temporal property. The second encoding is an improvement
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on the first that produces two sets of constraints: one that depends on the LTL

formula only (i.e. not the bound) and its output is linear with respect to its input;

and another, with a size of O(k), that depends on the bound k only. Compare

with propositional encodings where, if n is the size of the LTL formula, the output

is typically of size O(nk) instead of O(n + k) with our approach. Furthermore,

with a binary encoding of states, the size of the later component is reduced to

O(log2 k).

We also present, in Section 5.3, an approach to encode of modular descrip-

tions of model checking problems while preserving their modularity and hierar-

chical representation. We show, in particular, how several features of a software

and hardware description language such as SMV (Cimatti et al., 2002) can be

easily represented within the effectively propositional fragment. Using the ideas

depicted here, it is also possible to develop a tool to translate system descrip-

tions in industry standard formats (e.g. Verilog HDL or SMV) automatically into

a format such as TPTP (Sutcliffe and Suttner, 1998) suitable for consumption by

first-order theorem provers.

5.1 Introduction to model checking

In this section we introduce the main formal definitions that we will use in the

context of model checking. We first define the linear temporal logic (LTL) in a

way that closely follows the standard definitions found in literature but with a

few modifications to better represent the notion of bounded executions.

5.1.1 Linear temporal logic

This is a temporal logic which deals with individual executions of a system. In can

represent properties such that “there is some execution path in which the system

eventually reaches some particular state” and that “in all execution paths, two

atomic predicates will never be set simultaneously to true”. Formally, we start

by defining the notion of an execution path.

Definition 5.1. Let V = {p1, . . . , pn} be a set of elements called state variables.

A subset s ⊆ V is known as a state.

A path π = s0s1 . . . is a, finite or infinite, sequence of states. The length of a

finite path π = s0 . . . sk, denoted by |π|, is k + 1; while, for an infinite path, we
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define |π| = ω, where ω > k for every number k.

A k-path is either a finite path of the form π = s0 . . . sk, or an infinite path

with a loop of the form π = s0 . . . sl−1sl . . . sksl . . . sk . . . , in the sequel also written

as π = s0 . . . sl−1(sl . . . sk)
ω. �

We will assume that system executions are always infinite paths, i.e. there are

no deadlock states. Finite paths, however, are also needed to represent the prefix

of an execution of the system up to a bounded length. With this intuition in mind

we now define the semantics of LTL formulae in negation normal form; these are

formulae built using propositional and temporal connectives, but negation is only

allowed in front of atomic propositions.

This is a technical restriction that simplifies the presentation of our results

and the definition of the logic itself, but it is not a limitation in practise since it

is possible to put arbitrary LTL formulae into negation normal form by applying

a simple translation.

Definition 5.2. A path π = s0, s1, . . . is a model of an LTL formula φ at a state

si, where i < |π|, denoted by π |=i φ, if

π |=i p iff p ∈ si,
π |=i ¬p iff p /∈ si,
π |=i ψ ∧ φ iff π |=i ψ and π |=i φ,

π |=i ψ ∨ φ iff π |=i ψ or π |=i φ,

π |=i Xφ iff i+ 1 < |π| and π |=i+1 φ,

π |=i Fφ iff ∃j, i ≤ j < |π|, π |=j φ,

π |=i ψWφ iff either: π is infinite and ∀j, i ≤ j, π |=j ψ,

or: ∃j′, i ≤ j′ < |π|, π |=j′ φ and ∀j, i ≤ j < j′, π |=j ψ.

Also π is a model of > for every state si with i < |π|, and of ⊥ for no state. We

write π |= φ to denote π |=0 φ. �

Note that we introduced the weak until, W, as a primary connective of our

temporal logic. Other standard temporal connectives —such as until, release

and globally— are introduced as abbreviations of the other existing connectives:

ψUφ = Fφ ∧ (ψWφ), ψRφ = φW(ψ ∧ φ), and Gφ = φW⊥.

If we consider infinite paths only, then the definition given matches the stan-

dard notion of LTL that is often found in literature; in particular dualities such
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Figure 5.1: Example execution paths of LTL semantics

as ¬Fφ ≡ G¬φ do hold. Since we assume that system executions are always infi-

nite, one can make use of these identities and put formulae into negation normal

form without any loss of generality.

Now the finite case is defined so that if π |=i φ then, for all possible infinite

paths π′ extending π, it is also the case that π′ |=i φ. Here we deviate a little

from usual definitions of LTL and dualities such as the above-mentioned do not

hold anymore. For example, neither Fφ nor G¬φ hold in a finite path where ¬φ
holds at all states. In particular, since finite paths in the temporal logic defined

are interpreted as prefixes of longer paths, it is not possible to write a formula to

test for the end of a path.

5.1.2 Kripke structures

In the context of model checking, the systems that we want to verify also need to

be abstracted using some particular formalism. As commonly done in literature,

we will assume that systems are described by Kripke structures, which simply are

transition systems representing how the execution of the system in question can

change from one state to another. The following is the formal definition.

Definition 5.3. A Kripke structure over a set of state variables V is a tuple

M = (S, I, T ) where S = 2V is the set of all states, I ⊆ S is a set whose elements

are called initial states, and T is a binary relation on states, T ⊆ S × S, called

the transition relation of the system. We also make the assumption that the

transition relation is total, i.e. for every state s ∈ S there is a state s′ ∈ S such

that (s, s′) ∈ T .

A path π = s0s1 . . . is in the structure M if s0 ∈ I and for every 0 < i < |π|
we have (si−1, si) ∈ T . We say that a path π in M is a prefix path if it is finite,

and a proper path otherwise.
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An LTL formula φ is satisfiable in a Kripke structure M if there is a proper

path π in M such that π |= φ. Similarly, a formula φ is valid in M if, for every

proper path π in M , π |= φ. �

Note that, if π is a prefix path in M and π |= φ, then for every extension π′

of π we also have π′ |= φ, thus prefix paths are enough for testing satisfiability.

Observe, however, that formulae such as Gψ or ψWφ (where φ never holds) are

never satisfied by (finite) prefix paths.

Now, while the symbol si represents a state in a path, we will use si to represent

a constant symbol in a predicate formulae. The similar notation was intentionally

chosen since a constant si will be used as a symbolic representation of a state si.

The intended meaning should always be clear by context, but a different typeface

is also used as a hint to distinguish the two possibilities.

Similarly, it is assumed throughout this section that the set P of predicate

symbols contains a unary predicate symbol p for every state variable p ∈ V .

The atom p(si) symbolically represents the fact that a variable p is true at the

state si of a path (i.e. p ∈ si), and the symbol PV denotes the set of predicates

representing state variables. Our next aim is to define the notion of a symbolic

representation of Kripke structures along the lines of representations commonly

used in the propositional case.

Let us define the canonical first-order structure for PV , denoted by CV . This

structure is an interpretation which, instead of the symbolic representations si

used elsewhere, draws constant symbols from the domain 2V , its signature is the

set of predicate symbols PV , and the interpretation of every predicate p ∈ PV is

defined as CV |= p(s) iff p ∈ s.

Definition 5.4. Let I(x) and T (x, y) be two predicate formulae of variables x

and x, y, respectively, using predicate symbols PV and no constants. We say that

this pair of formulae symbolically represents a Kripke structure M if

1. a state s is an initial state of M iff CV |= I(s).

2. a pair (s, s′) belongs to the transition relation of M iff CV |= T (s, s′). �

The idea described in this definition is extended to represent paths in a Kripke

structure M by a Herbrand interpretation as follows.

Definition 5.5. Given an interpretation I over the domain D = {s0, . . . , sk},
we define the k-path induced by I, denoted by πI , by πI = sI0 . . . s

I
k , where
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sIi = {p ∈ V | I |= p(si)}, for all 0 ≤ i ≤ k. We will rather informally refer to

the states sIi as induced states. For the induced k-path πI we will often omit the

superscripts on the induced states and simply write πI = s0 . . . sk.

Given a value l with 0 ≤ l ≤ k, we also introduce the notation πl,I to denote

the infinite k-path s0 . . . sl−1(sl . . . sk)
ω with a loop starting at sl. �

In the sequel we will assume that the set of initial states I and the transition

relation T of our Kripke structures are always symbolically described in this way.

Definition 5.5 immediately implies the following fact.

Lemma 5.1. Let M = (S, I, T ) be a Kripke structure and I an interpretation.

1. I |= I(si) iff sIi is an initial state of M .

2. I |= T (si, sj) iff (sIi , s
I
j ) belongs to the transition relation of M .

5.2 Encoding of temporal properties

In this section we present a translation that allows one to encode an LTL formula

as an effectively propositional formula. Following the results from Biere et al.

(1999), it has been shown that, if one wants to check the satisfiability of an LTL

formula, it is enough to search for k-paths that satisfy this formula.

Theorem 5.1 (Biere et al., 1999). An LTL formula φ is satisfiable in a Kripke

structure M iff, for some k, there is a k-path π in M with π |= φ.

Our translation makes use of this result by creating, for a given value k and a

Kripke structure M , a predicate formula whose models correspond to k-paths of

the system satisfying the original LTL formula (the details of such correspondence

are given later in Proposition 5.2). We begin giving a set of constraints that

characterise the k-paths of Kripke structures and define some auxiliary symbols,

which are used later in the translation.

Definition 5.6. Let M = (S, I, T ) be a Kripke structure, and also let k ≥ 0. The

predicate encoding of k-paths, denoted by [k], is defined as the set of constraints:
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succ(s0, s1)

succ(s1, s2)

. . .

succ(sk−1, sk)

succ(x, y)→ less(x, y)

succ(x, y) ∧ less(y, z)→ less(x, z)

succ(x, y)→ trans(x, y)

hasloop→ trans(sk, s0) ∨ · · · ∨ trans(sk, sk)

And the predicate encoding of the structure M , denoted by [M ], is defined as:

trans(x, y)→ T (x, y)

I(s0)

We also define [M,k] = [M ]∪[k]. Note that of the predicates succ(x, y), less(x, y),

trans(x, y) and hasloop are fresh new predicates not in PV . �

The intuition behind the predicates introduced in the previous definition is

to model paths in the Kripke structure. It easily follows, for example, that if an

interpretation I |= trans(si, sj) then the pair (sIi , s
I
j ) is in the transition relation

of the structure. The encoding of temporal formulae will then use the hasloop

predicate as a trigger that enforces, since it would make trans(sk, sl) true for

some l, the paths accepted as models to be infinite. The following proposition

summarises important properties of the models of [M,k].

Proposition 5.1. Let M be a Kripke structure, and let I be a model of the set

of constraints [M,k]. Then for every 0 ≤ i, j, l ≤ k:

1. If i < j then I |= less(si, sj).

2. The induced k-path πI = s0 . . . sk is a finite path in M .

3. If I |= trans(sk, sl) then the induced k-path πl,I = s0 . . . sl−1(sl . . . sk)
ω is an

infinite path in M .

Proof.

1. By a straightforward induction, from the first k + 2 constraints in [k].

2. Since I |= I(s0) it immediately follows by Lemma 5.1 that the induced

state s0 is an initial state of the system. It is easy to see that the constraints

imply T (si, si+1) for all i < k so, by the same lemma, the pair (si, si+1)

belongs to the transition relation of M , hence s0, . . . , sk is a path in M .
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3. If I |= trans(sk, sl) it follows again that (sk, sl) belongs to the transition

relation and, together with the previous item, it proves that πl,I is an

infinite k-path in M . �

The following two definitions give the translation of an LTL formula φ into a

predicate encoding following an approach similar to structural clausal form trans-

lations: a new predicate symbol is first introduced to represent each subformula,

here denoted by Θφ(x) in Definition 5.7, and then a set of constraints, given in

Definition 5.8, are added to give Θφ(x) its intended meaning.

Definition 5.7. We define the symbolic representation of an LTL formula γ, a

predicate formula Θγ(x), as follows:

Θ>(x) = > Θ⊥(x) = ⊥

Θp(x) = p(x) Θ¬p(x) = ¬p(x)

Θψ∧φ(x) = Θψ(x) ∧Θφ(x) Θψ∨φ(x) = Θψ(x) ∨Θφ(x)

ΘXφ(x) = nextφ(x) ΘFφ(x) = eventlyφ(x)

ΘψWφ(x) = weakψ,φ(x)

where nextφ(x), eventlyφ(x) and weakψ,φ(x) are fresh new predicates, not already

in PV , introduced as needed for subformulae of γ. �

Definition 5.8. For every pair of LTL formulae ψ, φ and a value k ≥ 0, we

define the following sets of constraints:

Φk
Xφ: x1: nextφ(x) ∧ trans(x, y)→Θφ(y)

x2: nextφ(sk)→ hasloop

Φk
Fφ: f1: eventlyφ(x)→ eventφ(x, s0) ∨ · · · ∨ eventφ(x, sk)

f2: eventφ(x, y)→Θφ(y)

f3: eventφ(x, y) ∧ less(y, x)→ hasloop

f4: eventφ(x, y) ∧ less(y, x) ∧ trans(sk, z) ∧ less(y, z)→⊥

Φk
ψWφ: w1: weakψ,φ(x)→Θφ(x) ∨ xweakψ,φ(x)

w2: xweakψ,φ(x) ∧ trans(x, y)→ weakψ,φ(y)

w3: xweakψ,φ(x)→Θψ(x)

w4: xweakψ,φ(sk)→ hasloop
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Again eventφ(x, y) and xweakψ,φ(x) are fresh new predicates not in PV .

We finally introduce the set of structural definitions of an LTL formula γ

(with depth k), denoted by [γ, k], as the union of the sets Φk
φ for every temporal

subformula φ of the original γ. �

Later in Proposition 5.2 we show how the models of such formulae relate to

the k-paths satisfying an LTL formula. We need first to introduce the concept of

a rolling function which will be used as a tool in the proof of such proposition.

Definition 5.9. Given a k-path π we define its rolling function δ, a function

defined for every 0 ≤ i < |π| and with range {0, . . . k}, as follows:

• If π is of the form s0 . . . sl−1(sl . . . sk)
ω, then

δ(i) =

i i ≤ k

l + [(i− l) mod (k + 1− l)] otherwise .

• Otherwise, if π = s0 . . . sk, then δ(i) = i for every 0 ≤ i < |π|. �

The rolling function is a notational convenience used to unfold an infinite k-

path π = s0 . . . sl−1(sl . . . sk)
ω as the sequence π = sδ(0)sδ(1) . . . , without explicitly

showing the loop. We emphasise the fact that the rolling function is defined only

when 0 ≤ i < |π|; in particular, if π is finite, the function is not defined for indices

outside of the path. Also notice that, for both finite and infinite paths, the rolling

function acts as the identity for all i with 0 ≤ i ≤ k. Moreover, for 0 ≤ i < |π|,
it is always the case that si = sδ(i); in fact, the following stronger result holds.

Lemma 5.2. Let π be a k-path, φ an LTL formula, i < |π| and δ the rolling

function of π. Then it follows that π |=i φ if and only if π |=δ(i) φ.

We will now prove one of the main propositions which shows how to obtain,

from models of the encoded formula, a k-path in the given Kripke structure that,

moreover, satisfies the original LTL formula at a particular state.

Proposition 5.2. Let M be a Kripke structure, γ an LTL formula, and I a

model of the formula [M,k] ∪ [γ, k] with domain D = {s0, . . . , sk}. We define a

path π according to the following two cases:

1. If I |= trans(sk, sl), for some 0 ≤ l ≤ k, then let π = πl,I for any such l.
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2. If I 6|= trans(sk, sl), for every 0 ≤ l ≤ k, then let π = πI.

Let i < |π|, and let δ be the rolling function of π. If I |= Θγ(sδ(i)) then π |=i γ.

Proof. Although the proofs for items 1 and 2 are independent, we will prove them

together since most of their arguments can be shared. Before starting we define,

for a formula φ, the set

Jφ =
{
j | i ≤ j < |π| and I |= Θφ(sδ(j))

}
,

which is the set of points after i where the symbolic representation of φ holds

under the current interpretation. Also observe that, if 0 < j < |π|, it is always

the case that I |= trans(sδ(j−1), sδ(j)).

Note as well that, if the interpretation I |= hasloop, then it would follow from

the rule hasloop→ trans(sk, s0) ∨ · · · ∨ trans(sk, sk) in [M,k] that I |= trans(sk, sl)

for some l and, therefore, π must be an infinite path according to item 1 of the

proposition’s statement.

Equipped with this information we will now start the proof by induction over

the structure of the formula γ.

• If γ = > (or ⊥), there is nothing to prove since also Θγ(x) = > (or ⊥).

• If γ = p (or ¬p), then I |= p(sδ(i)) (or ¬p(sδ(i))). By definition we know

that p ∈ sIδ(i) (or p /∈ sIδ(i)) and, since the states si = sδ(i), we have π |=i γ.

• If γ = ψ � φ, where � ∈ {∧,∨}, then I |= Θψ(sδ(i)) � Θφ(sδ(i)) and, by

induction, we get that π |=i ψ � φ.

• If γ = Xφ, then I |= nextφ(sδ(i)). Now observe that, if i = k then, by rule

x2, it would be the case that I |= hasloop and we are in the case of an

infinite path. In any case we would always have that i+ 1 ≤ |π|.

So now we have that I |= trans(sδ(i), sδ(i+1)), by rule x1 it is also the case

that I |= Θφ(sδ(i+1)), by induction π |=i+1 φ and, therefore, we are able to

conclude π |=i Xφ.

• If γ = Fφ, then I |= eventlyφ(sδ(i)). We also know, from rule f1, that

I |= eventφ(sδ(i), sj) for some 0 ≤ j ≤ k and, from f2, that I |= Θφ(sj).

Using this information we will first prove that Jφ is not empty.
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If j ≥ δ(i), then it is always possible to find a j′ > i such that j = δ(j′)

and, for any such j′, since I |= Θφ(sδ(j′)), we have that j′ ∈ Jφ.

Suppose that otherwise j < δ(i), then I |= less(sj, sδ(i)) and, by rule f3, it

follows I |= hasloop. So we must have an infinite path as defined in item 1,

in particular I |= trans(sk, sl) for some l. To avoid a contradiction from rule

f4, it must be the case that I 6|= less(sj, sl) and, therefore, l ≥ j. Again,

since the point j is after the loop, it is always possible to find a j′ > i such

that j = δ(j′) and, similarly, such j′ ∈ Jφ.

Now, since Jφ is not empty, let j∗ be any element in it. Then we know that

I |= Θφ(sδ(j∗)) and, by induction, π |=j∗ φ. Moreover, i ≤ j∗ and, therefore,

π |=i Fφ.

• If γ = ψWφ, then I |= weakψ,φ(sδ(i)). We consider now the set Jφ. If it

is not empty then let j∗ = min Jφ, otherwise let j∗ = ω. Note that, by

definition of Jφ, for every j in the interval

i ≤ j < min(j∗, |π|) , (5.1)

we have I 6|= Θφ(sδ(j)) and, from rule r1, we obtain that

I |= weakψ,φ(sδ(j))→ xweakψ,φ(sδ(j)) . (5.2)

Now it is easy to prove, for every j in the interval (5.1) and by a simple

induction over m = j − i, that

I |= weakψ,φ(sδ(j)) ∧ xweakψ,φ(sδ(j)) . (5.3)

The base case when i = j follows, since δ(j) = δ(i), by the original hy-

pothesis and from (5.2). Now for i < j we know, by use of the inductive

hypothesis, that I |= xweakψ,φ(sδ(j−1)). From rule r2 and also because

I |= trans(sδ(j−1), sδ(j)) it follows that I |= weakψ,φ(sδ(j)) and, using equa-

tion (5.2) again, I |= xweakψ,φ(sδ(j)).

Now, if I |= weakψ,φ(sδ(j)), from rule r3, I |= Θψ(sδ(j)) and, by structural

induction, π |=j ψ. In particular we obtain,

π |=j ψ for every i ≤ j < min(j∗, |π|) . (5.4)
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So, if Jφ is empty we conclude from (5.3) that I |= xreleaseψ,φ(sk) and,

from rule r4, we obtain that the path must be infinite. It then follows that

min(j∗, |π|) = ω and, from (5.4), π |=j ψ for every i ≤ j. In particular

π |=i ψWφ.

If, otherwise, the set Jφ is not empty, then it must be that j∗ ∈ Jφ. By con-

struction I |= Θφ(sδ(j∗)) and, by structural induction, π |=j∗ φ. Moreover,

j∗ < |π| and min(j∗, |π|) = j∗. Again from equation (5.4) we have π |=j ψ

for every i ≤ j < j∗ so we finally conclude that π |=i ψWφ. �

The previous proposition shows that, under the given assumptions, if an in-

terpretation I |= Θφ(sδ(i)) then there is a path π, determined by I, such that

π |=i φ. Note, however, that the converse is not always true, e.g. I 6|= Θφ(sδ(i))

does not necessarily imply π 6|=i φ for the possible induced paths.

Additional constraints can be added to the set [φ, k] in order to make the

converse hold but, since we are mostly interested in satisfiability of the LTL

formulae, this is not required for the correctness of our main result. Whether

the addition of such constraints would be helpful for the solvers to find solutions

more quickly, is an interesting question left open for further research.

What we do need to show is that, if there is a path that satisfies an LTL

formula, then it is also possible to find an interpretation that satisfies its symbolic

representation. The following definition shows how to build such interpretation

and later, in Proposition 5.3, we prove that it serves the required purpose.

Definition 5.10. Let π be a k-path and δ its rolling function. We define an

interpretation Iπ with domain D = {s0, . . . , sk}, for every si, sj ∈ D and pair of

LTL formulae ψ, φ, as follows:

Iπ |= p(si) iff p ∈ si, for p ∈ V .

Iπ |= less(si, sj) iff i < j.

Iπ |= succ(si, sj) iff i+ 1 = j.

Iπ |= trans(si, sj) iff δ(i+ 1) = j.

Iπ |= hasloop iff π is an infinite path.

Iπ |= nextφ(si) iff π |=i Xφ.

Iπ |= eventlyφ(si) iff π |=i Fφ.

Iπ |= eventφ(si, sj) iff π |=j φ and there is a j′ ≥ i with δ(j′) = j.

Iπ |= weakψ,φ(si) iff π |=i ψWφ.

Iπ |= xweakψ,φ(si) iff π |=i ψWφ ∧ ¬φ. �
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Proposition 5.3. Let π be a k-path in a Kripke structure M , and δ its rolling

function. Also let γ be an arbitrary LTL formula, and let i < |π|.

1. Iπ |= Θγ(sδ(i)) iff π |=i γ,

2. Iπ |= [M,k] ∪ [γ, k].

Proof.

1. For most cases of the formula γ (propositional and temporal formulae) it

immediately follows by definition that Iπ |= Θγ(sδ(i)) iff π |=δ(i) γ. Also

recall that, by Lemma 5.2, π |=δ(i) γ iff π |=i γ. If γ is a conjunction or

disjunction the argument follows by a straightforward induction.

2. Most constraints in [M,k] can trivially be shown to be satisfied simply by

definition of Iπ. The only interesting cases relate to the transition relation

and initial states.

Suppose that Iπ |= trans(si, sj) and, by definition, δ(i+1) = j. In particular

the pair (si, sj) must belong to the transition relation and, by Lemma 5.1, it

follows that Iπ |= T (si, sj). In general Iπ |= trans(x, y)→T (x, y). A similar

argument, since the state s0 is an initial state, shows that Iπ |= I(s0).

Now for the set [γ, k] it is enough to check that Iπ satisfies arbitrary ground

instances of the constraints in Φk
Xφ, Φk

Fφ, and Φk
ψRφ. We will consider in-

stances obtained mapping x→ si, y → sj and z → sl.

x1 If Iπ |= nextφ(si) then π |=i Xφ, by definition, π |=i+1 φ and, by

Lemma 5.2, π |=δ(i+1) φ. Now, from Iπ |= trans(si, sj), we obtain that

δ(i+ 1) = j, so that π |=j φ and, by previous item 1, Iπ |= Θφ(sj).

x2 Similarly, Iπ |= nextφ(sk) implies π |=k Xφ and, by definition of the

LTL semantics, k+ 1 < |π|. But this is only possible when the path is

infinite and, therefore, Iπ |= hasloop.

f1 If Iπ |= eventlyφ(si) then π |=i Fφ and, by definition, there must be a

value j ≥ i on which π |=j φ. From Lemma 5.2 also π |=δ(j) φ and,

by definition, it also follows that Iπ |= eventφ(si, sδ(j)). In particular

Iπ |= eventφ(si, s0) ∨ · · · ∨ eventφ(si, sk).

f2 If Iπ |= eventφ(si, sj) then, by definition, π |=j φ and, by the previous

item 1, Iπ |= Θφ(sj). (Recall j ≤ k, so δ(j) = j.)
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f3 If Iπ |= less(sj, si) then j < i. If additionally Iπ |= eventφ(si, sj) then,

by definition, there must be a j′ ≥ i with δ(j′) = j, so that j < i ≤ j′.

In particular j = δ(j′) 6= j′, which is only the case when the path is

infinite, j ≥ l and Iπ |= hasloop.

f4 Again if Iπ |= less(sj, si)∧ eventφ(si, sj)∧ trans(sk, sl) the path has a loop

that must start exactly at point l. As in the previous argument, it

also must be the case that j ≥ l and, in particular, Iπ 6|= less(sj, sl).

Therefore Iπ will never satisfy the body of rule f4.

w1 Follows by the logical tautology ψWφ→ φ ∨ (ψWφ ∧ ¬φ).

w2 If Iπ |= xweakψ,φ(si) then π |=i ψWφ ∧ ¬φ. From the LTL theorem

ψWφ ∧ ¬φ→ X(ψWφ) and Lemma 5.2, it follows π |=δ(i+1) ψWφ.

Again from Iπ |= trans(si, sj) we get δ(i+1) = j and, finally, we obtain

Iπ |= weakψ,φ(sj).

w3 Follows by the LTL theorem ψWφ ∧ ¬φ→ ψ.

w4 From the same argument as in w2 we get π |=k X(ψWφ), which is

only possible when the path is infinite. �

With these results being put in place we are able now to show, in Theorem 5.2,

how the problem of testing the satisfiability of an LTL formula in a Kripke struc-

ture can be translated into the problem of checking satisfiability of predicate

formulae.

Definition 5.11. Let M be a Kripke structure, φ an LTL formula and k ≥ 0.

The predicate encoding ofM and φ (with depth k), denoted by [M,φ, k], is defined

as the set of constraints [M,k] ∪ [φ, k] ∪ {Θφ(s0)}. �

Theorem 5.2. Let φ be an LTL formula, and M a Kripke structure.

1. φ is satisfiable in M iff [M,φ, k] is satisfiable for some k ≥ 0.

2. φ is valid in M iff [M,NNF(¬φ), k] is unsatisfiable for every k ≥ 0.

Proof. We only need to prove item 1, since 2 is just its dual.

Suppose first that φ is satisfiable in M . Then, by Theorem 5.1, there is a

k-path π in M such that π |= φ. Then, by following Proposition 5.3, we also

know that Iπ |= [M,k] ∪ [φ, k] ∪ {Θφ(s0)} and, therefore, [M,φ, k] is satisfiable.
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On the other hand, suppose that [M,φ, k] is satisfiable and let I be one of its

models. If I |= trans(sk, sl) for some 0 ≤ l ≤ k then, by Proposition 5.2, we know

πl,I |= φ and, by item 3 in Proposition 5.1, πl,I is a (proper) path in M .

Similarly, if I 6|= trans(sk, sl) for every 0 ≤ l ≤ k then, by Proposition 5.2, we

know πI |= φ and, by item 2 in Proposition 5.1, πI is a path in M . Now πI is

a prefix path in M , but it can be arbitrarily extended to a proper path π′ in M .

For such proper path π′ we would also have π′ |= φ. In either case the temporal

formula φ is satisfiable in the system M . �

Implicit bound encoding As seen in Definition 5.8, the encoding just pre-

sented makes explicit use of the bound k in order to build the symbolic represen-

tation of an LTL formula. Notice that, in particular, a constraint of size O(k) is

created for every subformula of the form Fφ of the property to be checked. In

this section we present an alternate encoding, which only uses the bound in an

implicit way.

Definition 5.12. Given pair of LTL formulae ψ, φ, we define the following sets

of constraints:

Φ′
Fφ: f1’: eventlyφ(x)→Θφ(x) ∨ xeventlyφ(x)

f2’: xeventlyφ(x) ∧ succ(x, y)→ eventlyφ(y)

f3’: xeventlyφ(x) ∧ last(x)→ hasloop

f4’: xeventlyφ(x) ∧ last(x) ∧ trans(x, y)→ evently2φ(y)

f5’: evently2φ(x)→Θφ(x) ∨ xevently2φ(x)

f6’: xevently2φ(x) ∧ succ(x, y)→ evently2φ(y)

f7’: xevently2φ(x) ∧ last(x)→⊥

The sets Φ′
Xφ and Φ′

ψWφ are identical to Φk
Xφ and Φk

ψWφ, except for the following

constraints which replace x2 and w4 respectively.

Φ′
Xφ: x2’: nextφ(x) ∧ last(x)→ hasloop

Φ′
ψWφ: w4’: xweakψ,φ(x) ∧ last(x)→ hasloop

We finally introduce the set of implicit structural definitions of an LTL formula

γ, denoted simply by [γ], as the union of the sets Φ′
φ for every temporal subformula

φ of the original γ. �
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Note that the newly defined sets Φ′
φ, do not explicitly use the value of the

bound k anymore. We replaced the explicit references to sk with a predicate

last(x) which should be made true for the constant symbol representing the last

state. Moreover, since the size of Φ′
Fφ is constant, the size of the encoding [γ] is

now linear with respect to the size of γ.

The k-paths that satisfy an LTL formula φ can therefore now be captured

with the set of constraints [k]∪{last(sk)}∪ [φ]∪{Θφ(s0)}. This representation is

convenient since it breaks the encoding in two independent parts, one depending

on the bound only and the other on the LTL formula only. Moreover it has a size

of O(n+ k) where n is the size of the original temporal formula.

A complete instance of the bounded model checking problem would be then

represented, analogous to Definition 5.11, as

[M,φ, k]∗ = [M ] ∪ [k] ∪ {last(sk)} ∪ [φ] ∪ {Θφ(s0)}

and, for such set of constraints, the statement of Theorem 5.2 also holds.

This encoding is particularly useful when searching for counterexamples in an

incremental setting, since both the system description and the temporal formula

have to be encoded only once. Just the small set [k] ∪ {last(sk)} needs to be

updated while testing for increasing bounds. If using a model finder that supports

incremental solving features, then one only needs to add succ(sk, sk+1) and replace

last(sk) with last(sk+1).

Logarithmic encoding of states As seen in the previous section, the only

part of the translation where there is an increase of size with respect to the input

is in [k], because of the series of facts of the form succ(si, si+1) and the constraint

hasloop→ trans(sk, s0) ∨ · · · ∨ trans(sk, sk) . (5.5)

This group of constraints, which is of size O(k), can be more compactly en-

coded by representing the names of states in binary notation. For this we in-

troduce a pair of constant symbols {b0, b1} in order to write, for example when

k = 24, the following definition for the succ predicate:
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succ(x3, x2, x1, b0, x3, x2, x1, b1 )

succ(x3, x2, b0, b1, x3, x2, b1, b0 )

succ(x3, b0, b1, b1, x3, b1, b0, b0 )

succ( b0, b1, b1, b1, b1, b0, b0, b0 )

In general we only need w = dlog ke constraints, with a total size of O(log2 k).

On the other hand, the constraint (5.5) is rewritten as:

hasloop→ loopafter(b0)

loopafter(x̄) ∧ last(ȳ)→ trans(ȳ, x̄) ∨ xloopafter(x̄)

xloopafter(x̄) ∧ succ(x̄, ȳ)→ loopafter(ȳ)

xloopafter(x̄) ∧ last(x̄)→⊥

where b0 is a string of w symbols b0, x̄ = xw−1, . . . , x0 and similarly for ȳ.

One also has to replace everywhere else occurrences of s0 with b0, the constant

symbol sk with its binary representation (e.g. for k = 13 use b1, b1, b0, b1), and

variables such as x and y with the corresponding x̄ or ȳ. The resulting set of

constraints, which we denote by [M,k, φ]b, is of size O(n log k + log2 k), where n

is the compound size of M and φ, and satisfies the statement of Theorem 5.2.

5.3 Encoding of the system description

Generating an instance of the bounded model checking problem requires three pa-

rameters as input: a system description M , a temporal formula φ and a bound k.

In the previous section we showed how to encode an LTL formula as a predicate

formula (w.r.t. the bound), but we generally assumed that the system (a Kripke

structure M) was already symbolically described.

In this section we deal with how to encode a system, which is originally given

in some industry standard format suitable to describe software and hardware

components, in the form of a predicate formula. An advantage of using an effec-

tively propositional, rather than just propositional, encoding is that important

features for component development, such as the ability to describe systems in

a modular and hierarchical way, can be directly represented in the target lan-

guage. There is no need, for example, to perform a flattening phase to create and

instantiate all modules of a system description before doing the actual encoding.

We will show now, by means of an example, how a system described in the

SMV language can be succinctly and naturally encoded within the effectively
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propositional fragment. Although we would prefer to formally define the fragment

of SMV considered here, the number of different SMV variants and the lack of

documentation on the formal semantics in existing implementations made this

task particularly difficult. Anyway, the explanation of the ideas presented in this

section is always general enough so that it is possible to apply them to other

arbitrary systems, not only the one in the example, and even implemented to be

performed in an automated way.

For our running example we consider a distributed mutual exclusion (DME)

circuit first described by Martin (1985) and then made available in the SMV for-

mat with the distribution of the NuSMV model checker (Cimatti et al., 2002).

The system description is fragmented in a number of modules, each being a sep-

arate unit specifying how a section of the system works. The DME, for example,

organises modules in a hierarchical way: the most basic modules are gates which

perform simple logical operations, then a number of gate modules are replicated

and assembled together to form the module of a cell, finally a number of cells

are also replicated and linked together in the main module which represents the

entire system.

Module variables A module usually defines a number of variables and describe

how their values change in time. In the DME example, a typical gate module

looks like:

module and−gate ( in1 , in2 )

var

out : boolean ;

assign

in i t ( out ) := 0 ;

next ( out ) := ( in1 & in2 ) union out ;

This is a module named ‘and−gate’ which defines two boolean variables as

input (‘in1’ and ‘in2’) and an output boolean variable (‘out’). The initialisation

part causes the output of all ‘and−gate’ instances to hold the value zero (i.e. false)

when the system starts to execute. At each step the module nondeterministically

chooses to compute the logical and of its inputs and update the output, or keep

the output from the last clock cycle. The ‘union’ operator in SMV effectively

creates a set out of its two operands and nondeterministically chooses an element

of the set as the result of the expression. So, this is the model of an asynchronous
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logical gate; fairness constraints (which are also encoded as LTL formulae) can

be added to ensure, for example, that the gate eventually computes the required

value.

In the symbolic description we represent each of these variables with a pred-

icate symbol such as, in this particular example, and gate in1(v1, v2, x). The

variable name is prefixed with the module name so that variables of different

modules do not interfere with each other. Since, moreover, several instances of

the ‘and−gate’ can be created, the first arguments v1, v2 serve to distinguish

among such instances, the following section explains this in more detail. The last

argument x represents a time step within the execution trace. Using this naming

convention, it is possible to describe the module as follows:

¬and gate out(v1, v2, s0)

trans(x, y)→
(and gate out(v1, v2, y)↔ and gate in1(v1, v2, x) ∧ and gate in2(v1, v2, x))

∨ (and gate out(v1, v2, y)↔ and gate out(v1, v2, x))

Note that, although the original SMV description distinguishes between inputs

and outputs of the module, our proposed encoding does not need to.

Submodel instances Modules can also create named instances of other mod-

ules and specify how its own variables and the variables of the its submodule

instances relate to each other. There is also one designated ‘main’ module, an

instance of which represents the entire system to verify. One has to distinguish

between the notions of a module (the abstract description of a component) and

its possibly many module instances, which actually conform the complete system.

In our running example, the DME circuit, part of the definition of a cell module

looks like:

module c e l l ( l e f t , r i ght , token )

var

ack : boolean ;

c : and−gate ( a . out , ! l e f t . ack ) ;

d : and−gate (b . out , ! u . ack )
...
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Here two submodule instances ‘c’ and ‘d’ are created, both instances of the

‘and−gate’ module. The elements ‘a, b: mutex half’ and ‘u: user’ are instances

of other modules also created within the cell, with definitions of other internal

variables such as ‘out’ and ‘ack’. The elements ‘ left ’ and ‘right’ are references

to other ‘ cell ’ instances, these are explained later in the following section.

Symbolically, the relations between the inputs and outputs of these modules

are described using the constraints:

and gate in1(v, c, x)↔mutex half out(v, a, x)

cell left(v, w)→ and gate in2(v, c, x)↔¬cell ack(w, x)

and gate in1(v, d, x)↔mutex half out(v, b, x)

and gate in2(v, d, x)↔¬user ack(v, u, x)

(5.6)

Here the variable v stands for a particular cell instance, the second argument of

the predicates is now filled in with the instance names of the different modules.

In general, if a module M1 creates instances of a module M2, we say that M2

is a submodule of M1. The submodule relation must then create a directed acyclic

graph among the modules of a system; and the submodule depth of a module is

the length of the longest path that reaches it from the designated ‘main’ module.

The depth of the ‘main’ module, for example, is always 0; and the depth of a

module is strictly less than the depth of its submodules.

In a module of depth d we will therefore use d+1 arguments in the predicates

that represent the module’s boolean variables. The last argument always denotes

time, and the interpretation of the other d arguments is the string of names that

represent each created instance in a chain of submodules. Consider for example

the ‘out’ variable of a module ‘some−gate’ which corresponds to an instance with

the fully qualified name of ‘main.sub1.sub2.sub3.sub4.out’; symbolically we would

represent such variable with the predicate

some gate out(sub1, sub2, sub3, sub4, x) .

Finally note that instances of the same module can in principle be reached

from the main module by paths of different lengths. Consider for example a

module ‘m1’ that creates instances of ‘m2’ and ‘m3’, but ‘m2’ also creates in-

stances of ‘m3’. In this example the module ‘m3’ is of depth 2 and not 1. So

in general, if a module of depth d creates an instance named ‘sub’ of another
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module of depth d′; and the sequence of constant symbols m1, . . . ,md is used to

identify an instance of the first module, then the sequence of d′ constant symbols

m1, . . . ,md, . . . , o, . . . , sub —where a number of dummy constant symbols ‘o’ (un-

used anywhere else) serve as padding to get the required length— is the identifier

of the second.

Module references Another feature of the SMV language is that modules can

get references to other modules as parameters (e.g. ‘ left ’ and ‘right’ in the cell

example). This feature is encoded introducing a new predicate, c.f. cell left(v, w)

in (5.6), that establishes this relation between the two modules. References are

used in our running example to communicate three different cells ‘e−1’, ‘e−2’

and ‘e−3’:

module main

var

e−3: process c e l l ( e−1,e−2 ,1) ;
...

which is encoded as: {cell left(e 3, e 1), cell right(e 3, e 2), cell token(e 3, x)}. In

general, the reference from a ‘module1’ to another ‘module2’ is encoded as:

module1 link(v̄, w̄)→module1 var1(v̄, x)↔module2 var2(w̄, x)

where v̄ and w̄ are sequences of variables of appropriate lengths according to the

depths of each module, and ‘link’ is the local name which the first module uses

to reference the second. Compare this with the relevant constraint in (5.6).

Enumerated types Finally, another common feature of component descrip-

tion languages is the use of enumerated types. Using standard encodings, such

variables are represented with an additional argument to denote the value cur-

rently hold. Also, a number of constraints have to be added in order to ensure

that one (and only one) value of an enumerated variable holds at a time.

For example, an enumerated variable ‘colour: {red, green, blue}’ would be
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encoded as:

m colour(v̄, x, red) ∨ m colour(v̄, x, green) ∨ m colour(v̄, x, blue)

¬m colour(v̄, x, red) ∨ ¬m colour(v̄, x, green)

¬m colour(v̄, x, red) ∨ ¬m colour(v̄, x, blue)

¬m colour(v̄, x, green) ∨ ¬m colour(v̄, x, blue)

Where v̄ represents a number of variables according to the depth of the module,

and the variable x stands for the time step during execution.

5.4 Evaluation of the approach

In order to evaluate the ideas presented here, we developed a tool smv2tptp

that —taking as input a SMV description, an LTL formula, and a bound k—

produces an effectively propositional formula in the TPTP format suitable for use

with existing effectively propositional and first-order reasoners. The tool, as well

as some of the generated benchmarks, have been made publicly available online.1

This translator is able to read a subset of the SMV specification language

with support of features such as: boolean and enumerated types, modules and

references to modules, limited support of process modules, and LTL specifica-

tions. Since this is just an early proof of concept, we did not implemented more

complex features such as vectors or arithmetic which, moreover, would perhaps

be better implemented using technology from satisfiability modulo theories (e.g.

Nieuwenhuis and Oliveras, 2005; Barrett and Berezin, 2004).

We then proceeded to select a number of problems which our tool was able to

read. Although the lack of support for arithmetic prevented us from using many of

the benchmarks made available by the community, we still were able to find some

interesting test cases among the examples distributed together with the NuSMV

model checker (Cimatti et al., 2002). Table 5.1 lists the selected instances together

with a brief description of the model they represent as well as the property to

be checked. The first three systems correspond to very simple designs, while the

three later ones are closer to real-world applications. Although NuSMV, in the

standard BDD mode, is able to prove the validity of these properties within a

few seconds; the benchmarks are interesting because they help to evaluate the

scalability of the bounded model checking approach.

1http://www.cs.man.ac.uk/~navarroj/tools/

http://www.cs.man.ac.uk/~navarroj/tools/
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After translating the problems into the TPTP format, we ran the resulting

effectively propositional formulae trough a number of different provers. We con-

sidered the Darwin (Fuchs, 2004) and iProver (Korovin, 2006) systems which

implement two different calculi that lift existing propositional techniques to the

first-order case and are particularly geared towards the effectively propositional

fragment. To compare with alternative approaches we also included Paradox

(Claessen and Sörensson, 2003) which implements an instantiation method that

reduces the problem to propositional satisfiability, and Vampire (Riazanov and

Voronkov, 2002) the leading resolution-based first-order theorem prover. Also, as

a reference to the existing SAT-based approach, we ran NuSMV in BMC mode

on the original SMV input files.

Recall that, since the properties to check are valid, all the formulae created

are unsatisfiable. In this context, when a prover finishes claiming that a formula

generated with a bound k is unsatisfiable, what we obtain is a proof that there

are no counterexamples of length ≤ k. We therefore ran, for each combination

of a benchmark and a prover, a number of individual tests for increasing values

of k. We stopped until the prover consistently took more than one hour to solve

a particular instance, or when all instances up to k = 100 were solved.

Table 5.2 shows the results of a first analysis on the outcome of this experi-

ment. The table shows either a number indicating the last bound that the prover

was able to refute within 1 hour or, in parenthesis, the time it took for the prover

to refute all bounds of a length of k less than or equal to 100. Notice that the mu-

tex benchmark is reported twice since two symmetric properties, from the point

of view of each of the two process being modelled, were tested for this system.

From these results some interesting conclusions can already be drawn. First,

the performance of NuSMV is comparable to that of Darwin and iProver.

Moreover, for the easy problems Darwin is even able to outperform NuSMV,

while on the hard problems iProver is still competitive. Another observation is

that, although both NuSMV and Paradox are based on instantiation methods,

NuSMV performs much better. The better performance of NuSMV is most

likely explained by the fact that their translation to SAT is able to make use

of domain specific information which is not directly available to Paradox. It

is promising and interesting to note however that, while also both Darwin and

iProver do not have access to any domain specific information, they still com-

pete with the BMC mode of NuSMV. Finally, the performance of Vampire is
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counter
Model: 3 bit counter
Property: Always eventually the counter will overflow.
File path: examples/ctl-ltl/counter.smv

short
Model: Simple access control
Property: If one requests access to the resource, it will even-

tually enter the busy state.
File path: examples/example cmu/short.smv

mutex
Model: Mutual exclusion algorithm
Property: If a process asks for access to the critical region,

it will eventually be granted.
Two symmetric properties are tested, one for each
of the two processes.

File path: examples/example cmu/mutex.smv

prodcell
Model: Production cell control model
Property: A liveness property that the system will not enter

a deadlock state.
File path: examples/production-cell/production-cell.smv

dme1
Model: Distributed mutual exclusion algorithm
Property: Two users will never have simultaneous access to

the shared resource.
File path: examples/example cmu/dme1.smv

gigamax
Model: Gigamax cache coherence protocol
Property: Two processors will not write simultaneously to

the cache.
File path: examples/example cmu/gigamax.smv

Table 5.1: NuSMV benchmarks selected for experimentation
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NuSMV Darwin iProver Paradox Vampire
counter (3m 45s) (12s) (2m 05s) 17 10
short (1m 22s) (44s) (1m 17s) 12 25
mutex1 (2m 38s) (1m 02s) 100 16 17
mutex2 (2m 39s) (1m 06s) 100 16 17
prodcell 60 80 43 22 3
dme1 71 9 37 9 5
gigamax 77 6 27 8 3

Table 5.2: Evaluation of provers on bounded model checking problems

very limited in this setup, adding to the experimental evidence that resolution is

not always the best approach for solving effectively propositional formulae.

Another interesting thing to observe, is how the running time of the provers

scales while the bound for the model checking problem is increased. For Darwin,

for example, the running times in Figure 5.2 show a pattern with the difficulty

of solving the ‘mutex’ problem increasing along two different and clearly defined

trend lines. There seems to be a group of ‘easy’ problems when k = 0, 3 (mod 4)

and a group of ‘difficult’ problems when k = 1, 3 (mod 4). This behaviour is

explained by the structure of the underlying system whose paths are periodic

with a period of length 4. Apparently, the prover finds the problem easier at

some points of this cycle.

iProver, however, shows a completely different behaviour. Its running times

shown in Figure 5.3 for the same problem, do not seem to be particularly affected

by the underlying system being checked and, furthermore, they show a lot more

of variance. Although most problems for different bounds are solved within 15

minutes, some few exceptional cases —placed at seemingly random points— take

up to one hour of running time. This effect was also observed when solving

other problems, Darwin often shows very well defined difficulty patterns, while

iProver running times tend to look more erratic.

Another interesting case is that of Darwin when solving the ‘prodcell’ prob-

lem. The prover manages to solve the k = 80 problem within 4:18 minutes, but

times out after one hour for k = 81. Interestingly, if one extrapolates the running

times of the prover on previous bounds, one finds that Darwin should be able

to solve even the k = 100 problem in just below 8 minutes. A closer look at

Darwin’s performance reveals that the solver timed out at k = 81 since, because

of its memory requirements, the operating system was kept busy most of the time
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Figure 5.2: Darwin running time solving first property of ‘mutex’
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Figure 5.3: iProver running time solving first property of ‘mutex’
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Figure 5.4: Darwin running time solving ‘prodcell’

doing memory swaps. A similar issue prevented Darwin of having a reasonable

performance on the other two industrial size problems ‘dme1’ and ‘gigamax’, but

the trend is much more evident in ‘prodcell’.

Finally, many trend lines were also computed for the best effectively proposi-

tional prover on each of these problems, giving us an indication on the scalability

of the approach. All problems had a best fit when approximated by a polynomial

equation of the form t = eb ka where t represents the expected running time in

minutes, and the coefficients a and b are given in Table 5.3 for different problems.

The running time of most problems seems to be of order x3, except for the last

two which are closer to x4. Also note that, in the case of the ‘mutex’ problems

two trend lines were found for each of the two properties. The ‘counter’ problem

also has a clearly distinguished easier trend line (not shown) when solved with

Darwin for problems with k = 0 (mod 8); recall that the system being modelled

is a 3-bit counter, so it also loops at every 8 states.

5.5 Concluding remarks

In this chapter we discussed several strategies to encode instances of the bounded

model checking problem as a predicate formula in the Bernays-Schönfinkel class.

We showed a translation which, given a linear temporal logical formula and a
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prover a b
counter Darwin 2.761954 −14.2671
short Darwin 2.963619 −13.9819
mutex1a Darwin 2.935007 −13.9017
mutex1b Darwin 3.006557 −13.7189
mutex2a Darwin 2.969525 −14.0579
mutex2b Darwin 2.991756 −13.6480
prodcell Darwin 2.679634 −10.2932
dme1 iProver 3.981209 −10.3161
gigamax iProver 3.750581 −7.97828

Table 5.3: Trend line coefficients for scalability patterns

bound k, produces a set of constraints whose models represent all the possible

paths (of bounded length k) which satisfy the given property. We also discussed

how to further improve this translation and generate an output of size O(n+ k)

where n is the size of the input LTL formula. The translation is also further

improved by using a binary representation to denote the states.

We then proceeded to show how to efficiently describe transition systems as

effectively propositional formulae, and demonstrated how many features com-

monly found in software and hardware description languages are succinctly and

naturally encoded within our target language. Most significantly, modular and hi-

erarchical system descriptions are directly encoded without a significant increase

in the size; unlike propositional encodings where a preliminary, and potentially

exponential, flattening phase needs to be applied to the system description.

Finally, a tool to translate a subset of the SMV language automatically into

effectively propositional formulae was developed and made available online for

the research community to use. Some experimental results were also reported,

indicating that although the capabilities of current technology are not mature

enough for industrial applications, the approach seems to be a promising solution

for the scalability problems of plain propositional translations. Directions for

future work include the extension to more general forms of temporal logics (such

as µTL), the inclusion of more features to describe systems (such as arrays and

arithmetic) and the application of similar encoding techniques to other suitable

application domains.
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Encoding planning problems

Planning has been the focus of attention of many researchers in the field of artifi-

cial intelligence, where it was originally conceived as a formalisation of deduction

processes (Green, 1969). Alternatively, the problem of finding a sequence of ac-

tions to reach, from an initial state, a set of desired goals, has also been reduced

to the problem of finding a satisfying truth assignment for a propositional logical

formula (Kautz and Selman, 1992; Kautz et al., 1996).

In this chapter we follow a similar approach but, instead of a propositional

encoding, we make use of the finite domain predicate logic introduced near the

end of Chapter 4, allowing a much more succinct and natural representation of

problems. The size of the resulting formula is linear in the size of, for example, a

STRIPS description (Fikes and Nilsson, 1971) of the original planning problem.

And, moreover, the formula can also be linearly translated to plain effectively

propositional logic without any further adornments.

This enables the use of reasoning mechanisms that work at a level of abstrac-

tion higher than propositional logic. On the other hand, our encoding may also

turn out to be useful for propositional, SAT-based, approaches to planning. In-

deed, it preserves the structure of the original planning problem in the obtained

effectively propositional formula and reduces the problem of finding an optimised

propositional encoding to the problem of finding an optimised propositional in-

stantiation of the EPR description. Thinking in this more general fragment of

first-order logic, often allows one to find simplifications or alternative encodings

that one might miss if only focused in the propositional case.

Reasoning with effectively propositional theories is a relatively new area of

research, which seems to offer a language with a good compromise between ex-

138
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pressibility and complexity. There are many computer scientists currently de-

veloping ideas and procedures in order to more efficiently deal with this kind of

formulae. Unfortunately, there is also a lack of benchmarks for these researchers

to experiment and test their systems. An important contribution of this chapter

is to aid filling in this gap with two alternative planning encodings which are a

new and rich source of problems with close links to real-world applications. Fi-

nally, we also include some empirical evaluation on the performance of existing

systems while solving some of these generated problems.

6.1 Introduction to planning

In this section we formally introduce several notions and concepts related to

planning. We first introduce the notion of a planning domain where applicable

actions, their preconditions and consequences, are described. We then proceed to

define what a planning problem and its solutions are. This formalism corresponds

to STRIPS-style planning as introduced by Fikes and Nilsson (1971).

Note that, unlike elsewhere in this thesis, in this chapter we will represent

variables with uppercase letters. This is because now many variables will be

needed, and using uppercase it will become easier to distinguish variables from

constant symbols which remain lowercase.

Definition 6.1. The language of a planning domain consists of a triple of finite

sets of symbols (O,F ,A) which are respectively called object, fluent and action

symbols. Fluent and action symbols have, moreover, an associated natural number

which we call the arity of the symbol. If f is a fluent symbol of arity m, then

an expression of the form f(t1, . . . , tm), where each ti is either a variable or an

object symbol, is called a fluent.

An action is a triple (αreq, αadd, αdel) where α = a(X1, . . . , Xn), for an action

symbol a ∈ A of arity n, is the signature of the action. Each element in the

triple is a set of fluents of the form f(t1, . . . , tm) where each ti is either an object

symbol or a variable Xj with 1 ≤ j ≤ n. We say that these are the fluents that,

respectively, the action requires, adds and deletes when it is executed. A planning

domain Dom is simply a set of actions and its size, denoted |Dom|, is defined as

the number of symbols occurring in the description of all its actions.

An action instance α′ = ασ, where σ is any substitution, corresponds to the

triple of sets of fluent instances (α′req, α
′
add, α

′
del), where α′req = αreqσ, etc. �
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Example 6.1. We will consider as a running example for this section, a planning

domain in the context of logistics. This domain has, among others, an action

load-truck that takes three parameters: a package X1 to load, a truck X2 where

to load the package, and a location X3 where the loading takes place. The

definition of such an action would probably look like:

load-truck(X1, X2, X3)

Req: at(X1, X3), at(X2, X3)

Del: at(X1, X3)

Add: in(X1, X2)

where at and in are binary fluent symbols. In words, the load-truck action re-

quires both the package, represented by the variable X1, and the truck, repre-

sented by X2, to be at the same location, represented by X3. The action removes

the package from the location and places it, instead, in the truck. A ground

instance of this action, say load-truck(pk3,w238,man), would load the particu-

lar package pk3 into the truck with license plate w238 when both items are in

Manchester (man).

The size of such definition is 16 (1 action symbol + 4 fluent symbols + 11

variable occurrences). We can imagine that the planning domain also contains

other actions to unload the truck and drive it from one location to another; as

well as more object symbols to identify different packages, trucks and locations.

Definition 6.2. Let α and β be two distinct ground actions. We say that α

interferes with β, if the action α deletes fluents that are either required or added

by β (i.e. αdel ∩ (βreq ∪ βadd) 6= ∅). We say that a pair of ground actions is

interfering if one of them interferes with the other. �

Example 6.2. The ground action load-truck(pk3,w238,man) interferes with the

other ground action load-truck(pk3, y659,man) since the former deletes the fluent

at(pk3,man) while the later requires it. Note that this is how, implicitly, the

functionality of the fluent at is preserved, i.e. no object is allowed to end up at

two different places simultaneously.

Definition 6.3. Given a set of ground fluents S and a set of ground actions A,

we say that A is executable in S and produces S′, denoted by S
A−→ S′, if:

• A does not contain interfering actions,
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• Areq ⊆ S,

• S′ = S \Adel ∪Aadd.

where Areq =
⋃
α∈A αreq, etc. �

Definition 6.4. A planning problem is given as a pair I,G of sets of ground

fluents, respectively known as the initial and goal states of the problem.

A solution plan for the problem is a sequence A1, . . . ,Ak of sets of ground

actions such that the sequence S1
A1−→ S2

A2−→ · · · Ak−→ Sk+1 holds, the set I = S1

and G ⊆ Sk+1. �

The kind of plans just defined are often known as plans with parallel ac-

tions. The semantics of such plans is that, at each step, it is possible to ex-

ecute the actions in a set Ai in any order (even simultaneously) while still

reaching the same outcome. In our example both load-truck(pk3,w238,man) and

load-truck(pk4,w238,man) can be simultaneously executed in order to load both

packages pk3 and pk4 into the truck w238. Alternatively, a linear plan is a plan

where each Ai is a singleton. Trivially, any plan with parallel actions can be

translated into a linear plan just by sequencing parallel actions into an arbitrary

order, e.g. first load package pk3, then load pk4.

6.2 Encoding of planning problems

In this section we will consider an encoding of planning problems into finite

domain predicate logic as introduced in Section 4.4. Given a planning domain

and a bound k, we construct a set of constraints Γk whose models correspond

to plans of length k. Linear plans of shorter lengths (< k) can also be encoded

by allowing the use of a nop action that does nothing or, in plans with parallel

actions, having steps where no action is executed (i.e. an empty Ai).

Although fluents and actions were already defined as atoms in predicate logic,

these predicate symbols will now play the role of constant symbols so that it

becomes possible to quantify over them in our encoding. For example, if f(Y )

is a fluent in a planning domain then the predicate holds(f, Y , T ) will be used to

denote the fact that an instance of the fluent f(Y ) holds at a step T of the plan.

Note that this sort of encoding requires, however, all fluents (resp. actions) to

have the same arity. It is easy to achieve this by padding actions with additional
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variables (which will be unused in its fluents), and padding fluents in actions with

some dummy constant symbol o ∈ D.

We will split the encoding of a planning domain into four groups of clauses.

The first group Boundk specifies the length of the plans to be considered, the

second group ActDom encodes the definitions of actions, the third ProbI,G encodes

the initial and goal states of a particular problem instance, and the fourth and

last one FrameDom encodes the frame conditions. Frame conditions are the ones

responsible to state that all fluents, whose status is not changed by any of the

executed actions, must remain unmodified. We will, actually, show two different

encodings for frame conditions that produce plans which are either linear or with

parallel actions. The following definition formally introduces the particular case

of finite domain predicate logic used to encode this formulae.

Definition 6.5. We consider a finite domain predicate logic having four different

sorts of constant symbols: O, F , A which are directly inherited from the planning

domain, and the sort T = {s1, . . . , sk} which contains several constant symbols

to denote time steps in a plan.

We will also use the variables X, Y —possibly subscripted— that range over

constant symbols of the sort of objects O; as well as F as a variable of sort F ;

the pair A, B of variables of sort A; and T , U as variables of sort T that usually

represent, respectively, the current and next step in a plan. We will also use, for

example, X and c̄ to respectively denote sequences, whose length will be clear

from context, of variables or constant symbols. We moreover assume that there

are two fixed positive numbers n and m which, respectively, denote the arity of

actions and fluents.

The logic also has six predicate symbols. A binary predicate next of sort T ×T
to represent the sequence of steps in a plan; three predicates reqs, adds and dels

all of the sort A × On × F × Om to represent fluents that are required, added

or deleted by each action; a predicate holds of sort F ×Om × T and a predicate

executes of sort A×On×T that respectively represent the fluents that hold and

actions that execute at each step in the plan. �

Using this logic we are now able to define the several components which con-

form our planning encoding.

Definition 6.6. Given a positive number k, the set Boundk is simply defined as

the set containing next(si, si+1) for every i ≤ 0 < k. �
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This simple set with a size of O(k) is used to define an order among steps in

the plan and to determine, from each step, which is the next one. The following

set encodes the actions available in the domain.

Definition 6.7. Given a planning domain Dom, the domain definition ActDom is

the set that contains, for each action in the domain, the constraints:

reqs(a,X, f, Y σ) for each f(Y )σ required by a(X)

dels(a,X, f, Y σ) for each f(Y )σ deleted by a(X)

adds(a,X, f, Y σ) for each f(Y )σ added by a(X)

together with the following three constraints:

reqs(A,X, F, Y ) ∧ ¬holds(F, Y , T )→¬executes(A,X, T )

next(T, U) ∧ adds(A,X, F, Y ) ∧ executes(A,X, T )→ holds(F, Y , U)

next(T, U) ∧ dels(A,X, F, Y ) ∧ executes(A,X, T )→¬holds(F, Y , U)

that make actions have their corresponding preconditions and effects. �

Example 6.3. In our running example, the action load-truck which was defined

in Example 6.1 would be encoded as:

reqs(load-truck, X1, X2, X3, at, X1, X3)

reqs(load-truck, X1, X2, X3, at, X2, X3)

dels(load-truck, X1, X2, X3, at, X1, X3)

adds(load-truck, X1, X2, X3, in, X1, X2)

Similar constraints are added for other actions in the domain. The last few

constraints of ActDom would ensure that an action is not executed when one of its

requirements does not hold or, if the action is executed, that fluents are added

or deleted accordingly. It is also easy to see that ActDom has a size of O(|Dom|).

We now move to the encoding of a problem instance using the set of constraints

ProbI,G. Typically, in propositional encodings of a planning problem, one has to

completely specify the initial state I stating, for every ground fluent, whether

f(c̄) or ¬f(c̄) should hold. To avoid this, we define a special action setup that

adds all the ground fluents to be true at the initial state and does not require or

delete anything. Quantifying over all fluents it is easy to express that “initially

nothing holds” and then make the setup action execute at the step zero of the

plan, the frame conditions will then ensure that everything not added by setup

remains false.
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Definition 6.8. Given a planning problem defined by an initial state I and

goals G, the encoding of the problem instance ProbI,G is defined as the set of

constraints:

¬holds(F, Y , s0)

adds(setup, X, f, c̄) for every f(c̄) in I

executes(setup, ō, s0)

next(T, U)→¬executes(setup, X, U)

holds(f, c̄, sk) for every f(c̄) in G

where ō simply represents the sequence o, . . . , o of dummy constant symbols of

the required length. �

Example 6.4. Suppose that initially we have two packages in Manchester, a

truck in London, and our goal is to get the packages to Edinburgh. This corre-

sponds to an initial state I = {at(pk3,man), at(pk4,man), at(w238, lon)}, a set of

goals G = {at(pk3, edn), at(pk4, edn)} and would be encoded as ProbI,G:

¬holds(F, Y1, Y2, s0)

adds(setup, X1, X2, X3, at, pk3,man)

adds(setup, X1, X2, X3, at, pk4,man)

adds(setup, X1, X2, X3, at,w238, lon)

executes(setup, o, o, o, s0)

next(T, U)→¬executes(setup, X1, X2, X3, U)

holds(at, pk3, edn, sk)

holds(at, pk4, edn, sk)

The first constraint makes all fluents false at time s0, then we have the definition

of the setup action. A pair of constraints follow that make setup execute in the

first step, and only then. Finally we specify that the goals should hold at the

final state sk. Note again that we do not have to specify where packages are not,

such as ¬at(pk3, lon), or that the truck is empty (because there is nothing in it).

We finally proceed to describe the rules that actually encode the frame con-

ditions and, at the same time, to disallow the execution of interfering actions.

The following sections consider two alternatives that correspond to plans that

are either linear or with parallel actions.
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6.2.1 Linear plans

One possibility is to allow only one action to execute at a time, this way the

frame conditions can be directly expressed stating that the truth value of fluents

not added or deleted by an action do not change. Moreover, in order to allow

plans whose length is shorter than the bound k, a nop action that does nothing

should be added to the definition of the planning domain.

Definition 6.9. Given a planning domain Dom, the linear frame encoding of

the domain, denoted by LFrameDom, is the set containing, for each action symbol

a ∈ A and fluent f ∈ F , the constraint

next(T, U) ∧ executes(a,X, T ) ∧
∧
σ∈Ξa,f

Y 6= Y σ→
holds(f, Y , T )↔ holds(f, Y , U)

and the pair of constraints

∃A,X. executes(A,X, T )

executes(A,X, T ) ∧ executes(B,Z, T )→ A = B ∧X = Z

where the set Ξa,f contains all substitutions σ for which the fluent f(Y )σ is either

added or deleted by a(X). �

Example 6.5. In our example the linear frame conditions for the load-truck

action would be expressed as follows:

next(T, U) ∧ executes(load-truck, X1, X2, X3, T ) ∧
¬(Y1 = X1 ∧ Y2 = X3)→ holds(at, Y1, Y2, T )↔ holds(at, Y1, Y2, U)

next(T, U) ∧ executes(load-truck, X1, X2, X3, T ) ∧
¬(Y1 = X2 ∧ Y2 = X3)→ holds(in, Y1, Y2, T )↔ holds(in, Y1, Y2, U)

In words these constraints state that, except for the package X1 moved by the

action, all other objects remain at their same locations and in their same contain-

ers. The last few constraints of LFrameDom encode the fact that one, and only

one, ground action executes at any given time.

Note that this encoding requires |A| |F| constraints to represent the frame

conditions, where |A| (resp. |F|) denotes the number of action (resp. fluent)

symbols. Additionally, each fluent added or deleted by actions must appear

represented as a substitution in the set Ξa,f for one of such constraints. Therefore

the set of constraints LFrameDom has a size of O(|A| |F|+ |Dom|).
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6.2.2 Plans with parallel actions

Alternatively, several actions can be executed at once as long as they do not

interfere with each other. We consider an explanatory encoding following ideas

proposed by Haas (1987), Schubert (1990) and later applied in the propositional

case by Kautz et al. (1996); where it is expressed that, if a fluent changes its

value from one step to another, then one of the actions that modify it must have

been executed.

Definition 6.10. Given a planning domain Dom, the parallel frame encoding of

the domain, denoted by PFrameDom, is the set containing, for each fluent f ∈ F ,

the constraints:

added(f, Y , T )→
∨

(a,σ)∈∆f
∃X. (executes(a,X, T ) ∧ Y = Y σ)

deleted(f, Y , T )→
∨

(a,σ)∈∇f
∃X. (executes(a,X, T ) ∧ Y = Y σ)

together with the three constraints

next(T, U) ∧ ¬holds(F, Y , T ) ∧ holds(F, Y , U)→ added(F, Y , T )

next(T, U) ∧ holds(F, Y , T ) ∧ ¬holds(F, Y , U)→ deleted(F, Y , T )

dels(A,X, F, Y ) ∧ reqs(B,Z, F, Y )∧
executes(A,X, T ) ∧ executes(B,Z, T )→ A = B ∧X = Z

where the set ∆f (resp. ∇f ) contains the pair (a, σ) whenever the fluent f(Y )σ

is added (resp. deleted) by the action a(X). �

Example 6.6. In this case, the predicates added and deleted are defined for each

fluent. Consider for instance the following constraint that encodes the frame

conditions for the fluent at(Y1, Y2):

added(at, Y1, Y2, T )→
∃X. (executes(unload-truck, X) ∧ Y1 = X1 ∧ Y2 = X3)

∨ ∃X. (executes(drive-truck, X) ∧ Y1 = X1 ∧ Y2 = X3)

If a fluent at(Y1, Y2) is added at some state, then it must be the case that either

a package Y1 = X1 was unloaded at a location Y2 = X3 (from some truck X2) or,

similarly, a truck was driven to that location from another.

The last few constraints trigger the predicates added and deleted, whenever a

change in the truth value of a fluent occurs, in order to search for an explanation

of such change. The final constraint disables the execution of two actions when
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one deletes a requirement of the other and, therefore, they are interfering. It is

also not possible to execute two actions such that one deletes the fluent added by

the other, a contradiction will occur in ActDom when both actions try to assign

contradictory values to the fluent.

Note that, in this case, the number of clauses in PFrameDom is linear with

respect to the number of fluent symbols in F . Moreover, the size of the clauses

only depends on the number of actions that add or delete each given fluent.

Overall, PFrameDom has only a size of O(|Dom|) and does not directly depend on

the number of actions or fluents as in the previous case.

Theorem 6.1. Given a planning domain Dom, a problem I,G and a positive in-

teger k, the finite domain predicate formula Boundk∧ActDom∧ProbI,G∧FrameDom,

where FrameDom is either LFrameDom or PFrameDom, is satisfiable if and only if the

planning problem has a solution plan, respectively linear or with parallel actions,

of length less than or equal to k.

Proof. If an interpretation I is a model of the encoding, then the plan where

Ai = {a(c̄) | I |= executes(a, c̄, si)}, for 1 ≤ i ≤ k, is a valid solution to the

planning problem.

Conversely, if A1, . . . ,Ak′ is a solution plan (linear or with parallel actions)

with k′ < k, then it is possible to build an interpretation I, giving appropriate

values to predicates, such that I is a model of the encoding. �

This finishes the presentation of our first encoding which, although becoming

a bit involved in some points, easily and directly encodes the general framework

of STRIPS-style planning. Also note that the encoding, in particular the one

with parallel actions, has a size of O(|Dom|+ k); depending only linearly on the

size of the original input description and the bound k.

6.3 Alternative state-based encoding

The previous section followed an approach to directly encode STRIPS-style plan-

ning descriptions into the language of finite domain predicate logic, essentially

lifting ideas such as those by Kautz and Selman (1992) into a higher level lan-

guage. In this section we present an alternative encoding which, instead of the

STRIPS formalism, reformulates planning as a reachability problem.
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We present first as motivation an encoding for the game of Tower of Hanoi, and

then introduce a second example that more closely resembles planning problems

from real-world applications. We finally end this section with a discussion of

several issues raised by this kind of encodings, in particular some caveats of

STRIPS-style problem descriptions.

6.3.1 Tower of Hanoi

Tower of Hanoi is a popular mathematical puzzle which involves three towers and

a series of disks of decreasing lengths. Initially all the disks are stacked in order

on the first of the towers, the smallest at the top and the largest at the bottom.

One disk at a time is then moved from the top of a tower to the top another one.

The move is valid as long as the disk is smaller than the smallest disk on the

destination tower. The goal is to eventually move all the disks to the last of the

three towers; where they should appear, again, stacked in the correct order.

Consider then the following encoding of the Tower of Hanoi problem with n

disks. We will use a predicate p(T1, . . . , Tn) to encode a state, i.e. the configuration

of the disks, during the game. Each variable Ti will range over {0, 1, 2} denoting

the tower on which the disk i is currently located. A smaller index corresponds

to a smaller disk, for example T1 is the location of the smallest disk.

Now, following the rules of Tower of Hanoi, one is allowed to move a disk k

from a tower i to a tower j if

• the disk k is the smallest one in the tower i.

• the disk k would be the smallest one in the tower j.

Alternatively, these constraints can be reformulated as follows:

• the disks 1, . . . , k − 1 are not in the tower i.

• the disks 1, . . . , k − 1 are not in the tower j.

So, to encode the legal moves of Tower of Hanoi we use n clauses of the form

p(T1, . . . , I, . . . , Tj) ∧ T1 6= I ∧ · · · ∧ Tk−1 6= I

∧ T1 6= J ∧ · · · ∧ Tk−1 6= J → p(T1, . . . , J, . . . , Tj) ,
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as well as initial and goal conditions

p(0, . . . , 0) ¬p(2, . . . , 2) .

Equality can be removed using the general method of Section 4.4 or, for this

simpler case, by adding a number of unit clauses

neq(0, 1) neq(0, 2) neq(1, 2)

neq(1, 0) neq(2, 0) neq(2, 1)

after replacing every occurrence of X 6= Y with neq(X, Y ). Although not neces-

sary, a unit clause of the form ¬neq(X,X) can also be added to help provers in

pruning clauses faster.

Note that this encoding works by propagating and asserting p(T1, . . . , Tn) for

every configuration that is reachable from p(0, . . . , 0). Since the goal configuration

p(2, . . . , 2) is also reachable, the set becomes unsatisfiable and a solution (i.e. a

series of steps to get from one configuration to the other) can be extracted, for

example, from a refutation object found by a prover.

It is interesting to observe that, if we decide to ground this set of clauses in

order to feed it to a propositional satisfiability solver, we will obtain a rather

large set of O(n3n) clauses which can be, however, shown to be inconsistent by

the use of unit propagation only. This is because the encoding is Horn, i.e. each

clause has at most one positive literal.

Although the size of the produced ground encoding is rather large, because of

its structure it becomes very simple and easy to process. Moreover, higher level

reasoning approaches might not need to generate all those ground clauses at all,

and be better able to exploit the simple structure of this Horn encoding.

6.3.2 A logistics example

In order to further explore the possibilities of similar encodings, where each pos-

sible state of the domain is encoded as a single predicate p(. . . ), we now discuss

the application of these ideas in a slightly more realistic planning problem.

We decided to encode one of the simple versions of the DriverLog domain

presented at the Third International Planning Competition in 2002 (Fox and

Long, 2002). In this domain, trucks are used to move packages among different
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locations, with the added complexity that drivers are also needed and they have

to walk between trucks in order to drive them.

There are three kinds of objects in this domain: packages, drivers, and trucks.

Each of these objects can be situated at a location in the map. Additionally a

package can be in a truck, and a driver can be driving a truck. We note, however,

that these fluents have a functional behaviour, e.g. a package can only be either

at one location or in a single truck at any moment in time.

Consider then the following encoding. We will use two sets of constant symbols

to identify locations and trucks. Assuming that there are n packages, m drivers

and l trucks, we will use a predicate

p(P1, . . . , Pn, D1, . . . , Dm, T1, . . . , Tl) (6.1)

to encode a possible state of the world in this problem. Variables Pi, Dj and

Tk specify, respectively, the current location of packages, drivers and trucks. In

particular both Pi and Dj range over locations and trucks, while Tk ranges over

locations only. In order to save space and also improve readability, we will write

p[X → t] to denote the state predicate (6.1) after a variable X has been replaced

with the term t.

It is now possible to encode actions by specifying how to get from one state to

another. For the load action we use nl clauses, for each 1 ≤ i ≤ n and 1 ≤ k ≤ l,

of the form

p[Pi → Tk]→ p[Pi → tk] ,

where tk is the constant symbol representing the k-th truck. This will allow to put

a package in a truck if the package was originally situated at the same location

as the truck. The unload action is quite simply the converse of load, so we add

another nl clauses

p[Pi → tk]→ p[Pi → Tk] .

We also have a board action which allows a driver to get into a truck. It is very

similar to load, but has the added restriction that the truck must be originally

empty. This is encoded with ml clauses, for each 1 ≤ j ≤ m and 1 ≤ k ≤ k, of

the form

p[Dj → Tk] ∧D1 6= tk ∧ · · · ∧Dm 6= tk→ p[Dj → tk] .
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To disembark a truck we simply need ml clauses

p[Dj → tk]→ p[Dj → Tk] .

If a driver is on board of a truck, then it can drive the truck from one to

another connected location. This will require ml clauses

p[Dj → tk;Tk → L1] ∧ link(L1, L2)→ p[Dj → tk;Tk → L2] .

Finally drivers can also walk along paths, this action only requires n clauses

p[Dj → L1] ∧ path(L1, L2)→ p[Dj → L2] .

At last we only have to add unary clauses, instances of the atoms link(X, Y )

and path(X, Y ), to describe the map that the trucks and drivers use to travel.

It is also possible to handle equality by replacing X 6= Y with neq(X, Y ), and

asserting this predicate for every pair of distinct trucks and locations. Initial and

goal states are given, respectively, as positive and negative instances of the state

predicate (6.1). Interestingly, initial and goal states do not need to be ground. If

we are just interested, for example, in the actual locations of packages at the end

of a plan, variables for drivers and trucks can be left uninstantiated.

Although the planning domain encoded is rather simple, it already serves to

highlight some interesting features of our proposed alternative encoding approach

• The resulting is a set of Horn clauses. In particular, propositional instanti-

ations can be solved by unit propagation alone.

• The size of the encoding is only moderately large, with O(k2) clauses and

O(k3) literals where k = max(n,m, l).

• Inertial rules, i.e. frame conditions, are easily and transparently encoded

simply by using the same variable (e.g. Pi or Tk) in the original and resulting

state of objects which are not modified by an action.

• The encoding is in principle unbounded, i.e. it does not restrict plans to a

fixed upper bound on the length of the plan. In practise, the only restriction

would be the memory available to the prover.
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• There are no added complications, such as detecting conflicting or mutually

exclusive actions, in order to model parallelism in plans. In principle, a

prover can even reuse and compose fragments of plans since it has still

access to a high level description of actions.

• The encoding is natural and clear to understand.

Some other limitations and areas for improvement, however, are also noted:

• This approach requires all the information describing a state to be encoded

within a single predicate. If states are complex and involve many variables,

they will end up having many arguments and thus rendering a naive in-

stantiation approach completely impractical. This, however, motivates to

further the research in non-instantiation methods.

• There is no guarantee that the obtained plans (which can be extracted from

refutations of the clause set) will be optimal in any sense. Heuristics in

provers, nevertheless, can be used to tune the quality of the plans. Provers

are, in any case, already tuned trying to find short refutations, which would

in turn correspond to shorter plans.

• Unfortunately there seems to be no easy way to directly apply these ideas to

planning domains already defined in standard planning languages, such as

STRIPS (Fikes and Nilsson, 1971) and PDDL extensions (Ghallab et al.,

1998), that are currently being used by the planning community. The prob-

lem is that such descriptions often do not make explicit some information

which was essential in the construction of our encoding.

A common description would use, for example, a series of predicates such as

at(X, Y ) and in(X, Y ) to determine the location of objects in the world. But

the information that these predicates actually have a function-like behaviour

is only implicitly contained in the definitions of actions.

Moreover, there is usually no distinction between fluents that change its

value from one state to another, and predicates whose value remains fixed

throughout the whole plan. In the DriverLog domain, for example, the fact

that the path and link predicates do not change over time, and therefore do

not need to be encoded within the states, is again only implicitly available.
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disks Ground MiniSat Paradox Darwin iProver Vampire
6 0s 0s 0s 0s 11s 1s
7 1s 0s 0s 1s 1m 03s 3s
8 2s 0s 0s 3s 4m 18s 16s
9 8s 2s 1s 11s 14m 16s 8m 04s
10 28s 5s 2s 41s – 1 – 2

11 1m 38s 19s 7s 2m 34s – –
12 5m 35s 1m 05s 19s – 1 – –
13 18m 47s 3m 44s – 2 – – –
14 48m 39s 11m 21s – – – –
15 – 1 – – – – –

1Timed out after 1 hour. 2Gave up.

Table 6.1: Running times solving Tower of Hanoi

We feel that this provides a good justification to revise the languages that

are currently being used by the planning community, since relevant information

which is potentially useful to improve the performance of planners is missing from

existing domain descriptions.

6.4 Evaluation of the approach

We also ran a batch of experiments in order to evaluate the performance of ex-

isting systems trying to solve the problem of Tower of Hanoi with our proposed

encoding. The first system considered is a combination of an ad hoc implemen-

tation to generate the ground version of this encoding and MiniSat (Eén and

Sörensson, 2005), a propositional satisfiability solver. Other systems considered

were the three first-order reasoners Paradox (Claessen and Sörensson, 2003),

Darwin (Fuchs, 2004), iProver (Korovin, 2006), and Vampire (Riazanov and

Voronkov, 2002).

The results, shown in Table 6.1, draw a clear picture on how state-of-the-

art systems cope with our proposed encoding. The first two columns represent

the total time taken to solve an instance of the problem, and the time spent by

MiniSat parsing and performing unit propagation. As can be seen, most of the

time is actually spent on the generation of the grounded formulae.

Paradox follows on the list. This is a prover based on a grounding technique

and also calls MiniSat as a back end. Interestingly, since Paradox performs
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some simplifications while grounding, the time it takes to both ground and solve a

problem is comparable to the time spent by MiniSat solving an already ground

version of the formula. The prover, however, gives up even before trying to

ground the 13 disks problem, since it estimates that memory requirements would

be rather too large.

Darwin is another prover geared towards effectively propositional formulae,

which implements a non-ground version of the DPLL algorithm (Baumgartner

and Tinelli, 2003). It also has a competitive performance, but eventually suffers

from memory limitations. Although Darwin reports to be able to solve the 12

disks problem in under 20 minutes CPU time, it actually took almost 10 hours on

wall clock to complete. The huge difference in time is explained by the operating

system being busy swapping memory for the prover to complete its operation.

The difference between CPU time and wall clock was not significant when solving

problems with fewer disks.

Finally we also included iProver, another prover specialised on effectively

propositional formulae, and Vampire, the leading resolution first-order prover,

to see how they work on this state-based encoding. We see that the performance

of both provers is limited with respect to the others, but they still manage to

solve problems with a fewer number of disks. From personal communication with

Korovin, this behaviour is explained because of the time spend by these resolution

provers on expensive subsumption checks which turned out to be ineffective for

this kind of problems. When subsumption is partially disabled on iProver, then

the results become comparable to those of Darwin.

Then we also ran a number of experiments with problems semi-automatically

translated from the basic STRIPS instances used at the Third International

Planning Competition in 2002 (Fox and Long, 2002). A small script in Perl

was used to translate problem instances in this planning domain to effectively

propositional formulae in the TPTP language. This script, as pointed out on

the discussion at the end of Section 6.3.2, uses domain specific information and

therefore it is not able to translate arbitrary STRIPS files.

From this we built 20 instances, as shown in Table 6.2, with different numbers

of locations (l) and objects (o), i.e. packages, drivers and locations. It turned out

that only 4 of the easier instances, involving up to 9 objects, were solved in less

than half an hour by any of the first-order reasoners. In order to compare with

standard approaches, we also ran the SatPlan 2006 release (Kautz et al., 2006)
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l o SatPlan Paradox Darwin iProver Vampire
DriverLog01 3 6 1.0s 8s 8s 2s 1m 03s
DriverLog02 3 7 0.4s 16s 10s 1m 00s 32s
DriverLog03 3 8 0.7s – 49s 4m 03s 5m 33s
DriverLog04 3 9 0.9s – 5m 18s – 58s
DriverLog05 3 10 1.0s – – – –
DriverLog06 3 11 0.4s – – – –
DriverLog07 3 12 0.9s – – – –
DriverLog08 3 13 1.7s – – – –
DriverLog09 5 11 5.8s – – – –
DriverLog10 6 11 4.1s – – – –
DriverLog11 7 11 2m 01s – – – –
DriverLog12 10 11 1m 13s – – – –
DriverLog13 12 11 – – – – –
DriverLog14 10 12 27s – – – –
DriverLog15 12 16 2m 42s – – – –

...
...

... – – – – –

Table 6.2: Running times solving the ‘DriverLog’ planning domain

using MiniSat as the back-end satisfiability solver. We can see that SatPlan

scales much better, being able to solve the first 10 instances (with up to 11 objects

and more locations) in just a few secconds. Problems until the 15th instance (with

up to 16 objects) can still be solved in minutes, but then the planner also starts

to time-out after half an hour of search.

6.5 Concluding remarks

This chapter has explored many possible alternatives to encode applications from

the planning domain using effectively propositional formulae or, equivalently, the

finite domain predicate logic.

In particular we have shown first how planning problems, including their frame

conditions, can be easily encoded within the proposed fragment of logic. More-

over, the size of the generated formulae is linear with respect to size of a standard

description, e.g. in the STRIPS language, of the original planning problem. This

is in contrast with propositional encodings where the size of the resulting formulae

is often exponential in the size of the input.

We also proposed a second alternative approach which uses a single predicate

to encode the complete state of the world at each step in the execution of a plan.
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We argue that this encoding has several interesting features. For one it results

in a simple set of Horn clauses, despite the fact that a direct translation from

existing STRIPS descriptions is less suitable.

We believe that the ideas presented here are of great value to both the planning

and automated reasoning communities. First, by describing problems at a higher

level of abstraction, it becomes easier to apply more general reasoning techniques

that do not necessarily deal with the handling of individual objects one at a time.

On the other hand, the ideas presented here might also turn out to be useful for

propositional SAT-based approaches. Since the problem of finding optimised

propositional encodings, including but not limited to planning, is reduced to

finding an appropriate instantiation of the obtained finite domain formula.

Moreover, in particular for the automated reasoning community, we are also

providing a source of new and relevant benchmarks which developers of first-

order reasoners, particularly those geared towards the effectively propositional

fragment, can use to test the capabilities of their systems. As a contribution

of this thesis, in fact, we have made available a set of effectively propositional

formulae, obtained from the experiments performed in Section 6.4, in the TPTP

format for the research community to use. Another interesting issue which has

been left open until now, and which is the matter of the following chapters, is

how existing reasoners can be improved, and new ones designed, in order to more

efficiently solve this kind of problems.



Chapter 7

Solving problems in effectively

propositional logic

The previous two chapters were mainly concerned with the translation of problems

from different applications into effectively propositional formulae. And, although

some experiments were performed where the generated problems were fed into

existing theorem provers, the issue of how to design algorithms and reasoning

mechanisms to deal with such problems has not been examined so far.

Earlier in Chapter 4, a brief description of the state of the art on techniques to

check the satisfiability of effectively propositional formulae was given. The aim of

this chapter will therefore be to study and evaluate some possible improvements

on these reasoning techniques.

This chapter is divided in two main sections. The first one mostly deals with

ideas and approaches to checking the satisfiability of effectively propositional log-

ical formulae by reducing them to propositional logic. After such reduction, stan-

dard propositional techniques, such as those described in Chapter 2, are applied

in order to actually solve the problem. In particular we propose a linking restric-

tion which complements earlier ideas of Sections 4.2.3 and 4.2.4; and present a

comparison between incremental and one-shot methods to solve EPR formulae.

Then, the second section discusses some reasoning techniques which can be

directly applied to effectively propositional clauses, without having perform a

preliminary ground instantiation. We show how inference rules, such as resolu-

tion, are potentially more efficient when directly operating with clauses in this

form; and propose a new generalisation inference rule which, furthermore, allows

to more efficiently generate proofs and refutations.

157
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7.1 By reduction to propositional logic

As anticipated, in this section we will first consider techniques within an instanti-

ation framework where, in order to solve an EPR problem, one tries to generate an

equisatisfiable ground version which is finally solved by a propositional satisfiabil-

ity solver. The advantage of this approach is that it becomes easy to incorporate

all the technology and optimisations that have already been developed by the

propositional satisfiability community in recent years.

On the other hand, by designing efficient procedures to translate effectively

propositional formulae into plain propositional, one provides an alternative ap-

proach to produce propositional encodings of real-world problems. Instead of

carefully crafting encodings of different application domains into propositional

logic, one can instead take advantage of the more friendly and natural language

of effectively propositional logic, and then use a single unified translator which

provides a number of generic simplifications and optimisations simultaneously to

all application domains.

In particular, we discuss two main ideas. The first one is an alternative to

the linking restriction proposed by Schulz (2002) and implemented in eground.

Our proposed ground term linking is inspired by issues raised when solving real-

world problems and, as we show, is rather easy to implement on top of existing

instantiation-based systems such as Paradox (Claessen and Sörensson, 2003).

The second idea revisits the issue on whether, for effectively propositional

formulae, an incremental or a one-shot approach is more convenient. Paradox,

which is one of the leading instantiation-based provers for effectively propositional

problems, uses an incremental approach. We challenge this design decision and

show that, in many cases, employing a simple one-shot approach the efficiency of

the prover is increased by several orders of magnitude.

7.1.1 Improving linking restrictions

Consider an effectively propositional formula which includes a binary predicate

symbol p all whose positive occurrences are the ground instances: p(0, 1), p(1, 2),

. . . , p(k−1, k). Then, negative instances of ¬p(x, y) only need to be instantiated

with exactly those combinations of terms, since any other would result in the

creation of a pure literal. Interestingly, neither eground’s linking restrictions

nor Paradox’s sort inference are able to capture this information and both
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generate an amount of O(k2) of instances instead.

On the other hand, it is fairly common for this kind of situation to arise on

problems generated from real-world applications. In the bounded model checking

problems of Chapter 5, for example, all the positive occurrences of the atom

succ are ground and, if the bound of the problem is k, there are only k different

instances of them. However, again, both eground and Paradox would create

an amount of O(k2) of ground instances for each negative ¬succ(x, y). From this

we came up with the following algorithm as an alternative linking restriction,

where the set Ts is defined as in Definition 4.4 in the previous Section 4.2.3.

Algorithm 7.1 (Ground term linking). For each signed predicate symbol s: if

all tuples in the set Ts are ground then, during instantiation, a clause containing

the literal s̃(t1, . . . , tn) is generated only if the tuple of terms (t1, . . . , tn) ∈ Ts.

Although this linking restriction might seem to be very weak, it is also very

useful in practise since, first, it is applicable to many instances generated from

real-world problems and, second, it is easy to implemented on top of existing

systems such as Paradox with very little overhead. Moreover, this linking re-

striction is orthogonal to other optimisations such as sort inference.

One first has to analyse the input formula F to find predicate symbols p such

that either Tp or T¬p contain only ground terms. This process is simple, is done

only once and in linear time at the beginning of the solving process. Then, since

Paradox already maintains a hash to map every ground term to a propositional

atom for use by MiniSat (Eén and Sörensson, 2005), the back end SAT solver,

one can use this hash table to record the admissible ground instances of the

relevant predicate symbols.

After recording such ground terms, and before starting the search for models,

one locks the hash so that no more instances are generated. Later, during the

instantiation process, any attempt to create an instance which is not already

present in a locked hash will be denied. Thus allowing the prover to discard

clauses containing those instances even before they are generated and sent to the

satisfiability solver.

It is interesting to note that the stronger notion of complete linking from

Algorithm 4.2, very similar to the hyper-linking restriction of Lee and Plaisted

(1992), is also easy to implement on top of Paradox. One would have to collect,

for each signed predicate symbol s, the set of terms Ts. Then, before generating
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a clause containing the ground literal s̃(t1, . . . , tn) one would have to perform an

‘instance of’ check of the tuple (t1, . . . , tn) against all tuples in Ts.

Moreover, this basic idea can be improved in at least two ways. First, the set

of tuples Ts can be pruned by removing any tuple which is an instance of another

tuple already in Ts (i.e. subsumption checking). And second, the ‘instance of’

checks are only needed when a new ground term is seen by the prover, since the

result of this check can also be stored in the hash table of each predicate symbol.

Nevertheless, there is still a small overhead if one were to implement this

strategy. The ‘instance of’ checks, even if done only once for each ground term,

might turn out to be expensive and outweigh the possible benefits obtained by

limiting the instance generation with this complete linking approach.

In either case, we found that these techniques are easier to implement when

using a one-shot rather than an incremental generation approach. Thus raising

the question of —particularly for the case of effectively propositional formulae—

whether the incremental strategy, as implemented e.g. in Paradox, is the most

appropriate when instantiation is combined with linking restrictions.

7.1.2 Incremental and one-shot methods

The idea behind the implementation of Paradox works by, instead of trying to

find a refutation of the set of input clauses, searching for a finite model which

would establish the satisfiability of such clauses. This technique, also known

in the literature as MACE-style finite model finding (McCune, 1994a) as we saw

earlier on Section 4.2.5, generates a set of propositional clauses which is satisfiable

if and only if the original input set has a model with a domain of size k.

For arbitrary first-order formulae, there is no a priori bound until when the

search can be stopped. Hence, the typical implementation incrementally tries all

possible domain sizes until either a model is found or resources are exhausted. It

is however known that, as a consequence of Herbrand’s theorem, if a formula is

satisfiable then it must have a model whose domain is its Herbrand domain. For

effectively propositional formulae, the Herbrand domain is finite and, therefore,

it is enough to search for a model of size k̂, where k̂ is the number of constant

symbols in the original input description.

Systems such as eground (Schulz, 2002) implement a one-shot approach for

effectively propositional problems where only a search for a model of size k̂ is

attempted. Paradox’s implementation, however, uses the incremental approach
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Problem domain sat unsat –
Syntactic 90 362 98 452
Natural language processing 177 7 38 184
Algebra - Groups 56 51 2 107
Other 37 46 32 115

360 466 170 996

Table 7.1: Benchmarks used to test instantiation methods

trying all domain sizes from 1 until k̂ for effectively propositional formulae under

the rationale that, if the problem is satisfiable, “it is very likely that it is not

needed to go all the way up to the biggest case, and that a smaller model can

be found much quicker” (Claessen and Sörensson, 2003). This design decision

seems to be appropriate since, even in unsatisfiable problems, Paradox often

outperforms eground on a number of effectively propositional benchmarks from

the TPTP problem library.

We observed that, however, in order to implement the ideas discussed in

the previous section a one-shot approach is often more convenient. Moreover,

many simplifications in the encoding generated by Paradox become possible, for

example symmetry reduction clauses can be simplified or even avoided altogether

in problems with no equality or function symbols. Experiments in the following

section explore and compare the effectiveness of the incremental and the one-shot

approach when combined with ground term linking.

7.1.3 Evaluation of the approach

In order to experimentally evaluate the ideas that have just been briefly discussed

in this section, we modified a version of Paradox which implements the ground

term linking restriction combined with a one-shot approach to solve effectively

propositional formulae.

We then selected a number of effectively propositional benchmarks from the

TPTP library. Table 7.1 shows the number of problems used by their domain

and satisfiability status. A number of problems remained unsolved by both the

original and the modified versions of Paradox after 15 minutes of search, those

are listed in the third column.

All problems solved by the original version of Paradox were also solved by

the modified version, plus two unsatisfiable problems which originally remained

unsolved and now were completed almost instantly. Table 7.2 shows a summary
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sat unsat
time + 97.43% − 88.83%
domain size +291.83% − 8.21%
atoms + 31.51% − 2.43%
clauses +292.38% − 25.97%
conflicts − 2.89% − 99.97%

Table 7.2: Summary of the effects of new instantiation methods

of how some of the statistics changed from the original to the modified version

for satisfiable and unsatisfiable problems.

As we expected, because of the use of a one-shot instead of an incremental

approach, the time required to solve satisfiable problems increased and, for these

particular benchmarks, it almost doubled on average. The largest domain size

for which a model was sought, as well as the number of ground clauses generated,

almost quadrupled. While the number of distinct ground atoms also had an

increase of about 30%. Interestingly, the number of conflicts generated by the SAT

solver, an indication of the search space explored, did not change significatively.

One might speculate that, although it is possible to find shorter models with the

incremental approach, the actual search space explored by the SAT solver while

looking for a larger model does not necessarily change too much.

It is also worth mentioning that most satisfiable problems are, nevertheless,

rather easy and are solved within a few seconds by both the original and the

modified versions of Paradox. About 90% of the problems are still solved

in less than one second even by the modified version which does perform full

instantiation. Also, when looking at individual problems, in 59% of the cases the

encodings of the generated problem were still smaller or equal in the modified

version, while 71% of the problems also required less or the same ammount of

search (number of conflicts).

On the other hand, the results for unsatisfiable problems are rather impressive.

Running time was reduced about 89%, that is almost 9 times faster than the

original implementation of Paradox. The largest domain size for which a model

was sought is also reduced. This is because, if a contradiction arises during the

instantiation phase, the procedure is stopped and no search is performed at all.

This was the case in a few problems, where the contradiction was not detected

for smaller domain sizes but it was easily spotted when trying to do the full

instantiation. Some significant reductions are also seen in the number of distinct
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ground atoms, and ground clauses generated. These are result of the use of our

proposed linking restriction. Finally the number of conflicts made by the SAT

solver were also dramatically reduced by several orders of magnitude from about

a hundred thousand conflicts to just 30 (on average).

Again, looking at individual problems, in 13% of the problems the running

times were reduced from minutes to a few seconds while the rest (87%) were solved

in roughly the same time. In 49% of the problems the size of the generated ground

instance was significatively reduced (more than 40%), while in 48% the search

space (number of conflicts) was at least halved. Interestingly, 59% of the problems

were solved by unit propagation only, as opposed to 32% for the original version

of Paradox.

7.1.4 Results and conclusions

In this section we investigated a couple of techniques which, particularly for

unsatisfiable problems, are useful to significantly reduce both the search space

explored and the total running time of instantiation-based provers. As expected,

in the case of satisfiable problems, the use of a one-shot instead of an incremental

approach often has an adverse effect. We observed, however, that the magnitude

of these negative effects are often rather small since satisfiable problems tend to

be easier anyway.

While these techniques were described in the context of instantiation-based

methods, it might also be possible to apply them in different or broader circum-

stances. The proposed linking restriction, for example, can also be used in a

saturation-based framework in order to discard many clauses which might not be

relevant for obtaining a proof. The following section discusses these ideas, where

reasoning is done directly at the effectively propositional level, without resorting

to a propositional-based approach.

7.2 Reasoning in effectively propositional logic

In the previous section we mainly focused on approaches that, although designed

to more efficiently deal with effectively propositional formulae, at the end they

still resort to a reduction of problems to propositional satisfiability checking where

all the actual reasoning is performed. We will now show how methods to directly
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reason at the effectively propositional level open up the possibility of developing

even more efficient reasoning techniques.

In order to do so, we will first show how resolution can be exponentially more

efficient when used directly at the effectively propositional rather than through

a reduction to the propositional level. Although this result is not surprising,

and even perhaps expected, we are not aware of any formal proof of this in the

literature. We will, moreover, give an explicit example of a family of formulae

which have short quadratic first-order resolution refutations, while even their

smallest propositional refutations are exponential in size.

Then, as one of the contributions of this thesis, we propose a new inference

rule which we call generalisation. This makes use of sort assignments in order to

infer general information out of facts known about individual elements. We first

show that resolution can be augmented with generalisation giving rise to a system

which is still refutationally sound and complete. We will also show how some

standard sort inference algorithms, such as the one presented in Section 4.2.4,

are compatible with generalisation.

Finally we will give a formal proof that refutations with generalisation can

become exponentially smaller than those using resolution only. This is done, sim-

ilar to the comparison of effectively propositional and propositional resolution, by

giving an explicit example of a family of formulae which exhibit this exponential

gap between the two reasoning methods.

7.2.1 Propositional vs first-order resolution

In order to further motivate the use of Bernays-Schönfinkel formulae as a formal

language to represent problems, we prove in this section that resolution reasoning

within this fragment can be exponentially more efficient than in propositional

logic. This shows that the language not only provides means for creating more

compact encodings, but that the actual solving time is potentially reduced by the

use of this approach.

We consider proofs using the resolution inference system, as introduced earlier

in Section 4.3.1, which operates on sets of effectively propositional clauses; for

additional details we also refer the reader to the work of Bachmair and Ganzinger

(2001). In particular, we add now the notion of a propositional refutation, which

simply is a refutation all whose formulae are ground.

We will now proceed to show that there is a family of sets of clauses Si with
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respective unsatisfiability proofs Γi, where the shortest propositional refutation

of Si is exponentially larger than Γi. Recall that, although clauses formally

are disjunctions of literals, we will often write them as implications in order to

improve readability. The following theorem states the main result of this section

in a formal way.

Theorem 7.1. There is a sequence of sets of clauses S1, S2, . . . of increasing

sizes such that each Si has a refutation of a size quadratic in i, while the shortest

propositional refutation of Si has a size exponential in i.

Proof. Take a logic whose language has the set of constant symbols B = {0, 1},
and a single predicate symbol s of arity i. We will denote by 0̄, 1̄, x̄ etc. sequences

of constants 0, 1 and variables, respectively, whose length will be clear from the

context. The set Si consists of the following clauses:

s(0̄) . (7.1)

i clauses of the form:

s(x̄, 0, 1̄)→ s(x̄, 1, 0̄) . (7.2)

The clause

s(1̄)→⊥ . (7.3)

This set of clauses is unsatisfiable and its size is quadratic in i.

Note that every ground atom is of the form s(b̄), where b̄ is a sequence of

bits representing a number between 0 and 2i − 1 written in binary notation.

For a number n such that 0 ≤ n < 2i let us denote by n the sequence of i

bits denoting this number. Then (7.1) asserts s(0) and (7.3) asserts ¬s(2i − 1),

while the ground instances of clauses in (7.2) assert s(n)→ s(n+ 1). Using this

observation it is not hard to argue that every unsatisfiable set of ground instances

of clauses in Si contains all ground instances of (7.2), and so all propositional

refutations of this set have a size exponential in i.

Let us show that Si has a non-ground refutation of a quadratic size. To

this end, we will show, by induction on the length of a non-empty sequence of

constants 1̄, resolution proofs of the clauses

s(x̄, 0̄)→ s(x̄, 1̄), (7.4)

having a number of steps linear in the length of 1̄.
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When the length is 1, then (7.4) is an instance of (7.2). When the length is

greater than 1, by induction, we know that there is such a refutation of a clause

s(x̄, y, 0̄)→ s(x̄, y, 1̄) . (7.5)

From this and (7.2) we derive by a resolution inference the clause

s(x̄, 0, 0̄)→ s(x̄, 1, 0̄) .

From this and (7.5) we derive by a resolution inference the clause

s(x̄, 0, 0̄)→ s(x̄, 1, 1̄) .

and we are done.

This implies that there is a resolution proof of the clause

s(0̄)→ s(1̄)

having a number of steps linear in i, and hence a refutation having a number of

steps linear in i. Moreover, the size of each clause in the refutation is linear in i,

so the size of the refutation is quadratic in i. �

This example shows how, for some families of formulae, the difference be-

tween reasoning at the effectively propositional rather that just propositional

level can be a very significant one. Interestingly, as we have already pointed out

in Section 4.3.1, resolution was found not to be very competitive on effectively

propositional theorem proving. In the following section we introduce another

inference rule, particularly designed for effectively propositional formulae, as a

proposal to complement the resolution approach.

7.2.2 The generalisation inference rule

Suppose that, using some inference system such as resolution, a prover has been

able to derive, from a set of constraints F , that the fact p(ci) is true for all

elements in the domain of the logic. Imagine, moreover, that F includes a rule of

the form p(x)→ G(x), where G represents some large fragment of F . Logically,

one should now be able to infer that G(x) is true for all x; using only resolution,

however, the best that one can obtain is, after performing one inference for each
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constant symbol, that each individual G(ci) is true. Inspired by this example

is that we propose the generalisation inference rule which, unlike resolution, is

capable of performing this kind of inferences.

Anticipating material in later sections, we will introduce the definition of the

generalisation inference rule with respect to a sort assignment, those previously

introduced in Section 4.2.4. In particular recall that a sort assignment A is

a function that maps each predicate position to a sort, i.e. a set of constant

symbols; and that, for a formula F , the notation F |A denotes the set of all

ground instances of F which are compatible with A. Now, formally, we have the

following definition.

Definition 7.1. Given a sort assignment A, the inference rule of generalisation

with respect to A is

C1 ∨ s(x̄, c1, z̄)σ1 · · · Cn ∨ s(x̄, cn, z̄)σn
C1σ ∨ · · · ∨ Cnσ ∨ s(x̄, y, z̄)σ

GenA

where {c1, . . . , cn} is the sort assigned to the relevant predicate position with re-

spect to A, and σ is the most general unifier such that s(x̄, ci, ȳ)σiσ = s(x̄, ci, ȳ)σ,

for every 1 ≤ i ≤ n. �

One of the first results that we want to show, is that when resolution is

combined with generalisation, then the obtained inference system is still, as reso-

lution alone, refutationally sound and complete. For this we begin by introducing

the following set of clauses which will be useful to simulate generalisation using

resolution alone.

Definition 7.2. Given a domain restriction A, we define the set of generalisation

clauses JAK as the set containing all the possible clauses of the form

s(x̄, c1, z̄) ∧ · · · ∧ s(x̄, cn, z̄)→ s(x̄, y, z̄) , (7.6)

where {c1, . . . , cn} is the domain restriction of the relevant predicate position with

respect to A. �

Notice that all clauses in JAK|A are tautologies, since the variable y would

have to be mapped to a constant ci of its appropriate sort.

Lemma 7.1. If there is a refutation of a set of clauses S using resolution and

generalisation with respect to a domain restriction A, then there is a refutation

of S ∪ JAK using only resolution.
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Proof. The result easily follows by noticing that generalisation inference steps

can be simulated by resolving the n clauses of the form Ci ∨ s(x̄, ci, z̄)σi with the

corresponding clause in the set JAK from Definition 7.2. �

Now it is only left to provide some sufficient conditions to obtain suitable sort

assignments and show that, for such assignments, the set JAK is redundant and

can therefore be eliminated.

Definition 7.3. A sort inference function Ξ is a function that yields a sort

assignment given a set of clauses as input. Moreover, we say that Ξ is

• valid if, for any set of clauses S, the sets S and S|A are equisatisfiable; and

• stable if, for any set of clauses S, Ξ(S ∪ JAK) = A.

where, in any case, A = Ξ(S). �

The first condition, validity, states that when checking the satisfiability of S

by using instantiation-based methods, the generation of ground instances can be

restricted to those which are compatible with A. The condition of stability asserts

that the sort inference procedure is not affected when the set of generalisation

clauses JAK is added to a formula.

Getting closer to the proof of the main claim in this section, the following

theorem proves that resolution can be extended with generalisation preserving

soundness.

Theorem 7.2. Let S be a set of clauses, and let Ξ a valid and stable sort inference

function. Also let A = Ξ(S). If there is a refutation of S using resolution and

generalisation with respect to A then there is a refutation of S using resolution

only.

Proof. If there is a refutation of S using resolution and generalisation with respect

to A then, by Lemma 7.1 and since resolution is sound, S ∪ JAK is unsatisfiable.

Now, since the sort inference function is stable, Ξ(S ∪ JAK) = A, and, because

of its validity, the sets S ∪ JAK and (S ∪ JAK)|A = S|A ∪ JAK|A are equisatisfiable.

But recall that JAK|A contains only tautologies and, therefore, S|A∪JAK|A and S|A
are equisatisfiable. Finally, again by validity of Ξ, S|A and S are equisatisfiable.

So, since S ∪ JAK is unsatisfiable, then S also is, and since resolution is refu-

tation complete, there is a refutation of S using resolution only. �
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From this, our main result now follows as a simple corollary.

Corollary 7.1. An inference rule system based on resolution and generalisation,

with respect to a valid and stable sort inference function, is both refutationally

sound and complete.

Proof. Soundness follows by Theorem 7.2, while completeness is directly inherited

from the completeness of resolution. �

From this result it follows that, any valid and stable sort inference function

is suitable to be combined with generalisation in order to produce a sound and

complete inference system. It still remains open, however, the question on how to

obtain such kind of sort inference functions. This is the matter of the following

section.

Sort inference for generalisation

In this section we will explore some possibilities in order to generate sort informa-

tion that can be combined with the generalisation inference rule. A first option,

though not very interesting, is to assign the trivial sort assignment to all sets of

clauses.

Definition 7.4. Given an effectively propositional language with a domain D
of constant symbols, the trivial sort assignment is the function that maps every

predicate position to D. �

That is, it uses the domain of the logic itself as the sort for all variables

and positions in predicates. This procedure is clearly stable since, irrelevant to

the particular set of input clauses, the trivial sort assignment is always used.

Moreover, from Herbrand’s theorem, Theorem 4.2, this procedure is also valid

and therefore a suitable candidate to be used together with generalisation.

In the following Section 7.2.2, we will see how even this simple approach can

already represent a significant advantage over using the resolution inference rule

alone. However, particularly on problems from applications, it is very likely that

more specialised sort inference functions are able to give even better results in

practise.

In Section 4.2.4 we already saw an example of a sort inference function, i.e.

Algorithm 4.4, as a method proposed by Claessen and Sörensson (2003) and im-

plemented in Paradox in the context of grounding-based model finding. More-

over, it is not hard to argue, as it is done by Claessen and Sörensson (2003),
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that this domain inference function is valid —in the sense of our Definition 7.3—

and that, moreover, is not affected when adding the set of clauses JAK to S. So,

from Theorem 7.2, it follows that we already have a sort inference method that,

without any further modifications, can be directly used to empower generalisation

inferences.

It is to be expected, that if one obtains a sort inference method by extend-

ing some available technique to restrict the number of generated instances in a

grounding approach, then the obtained method will most likely be valid. This

follows since such kind of methods actually work by replacing the satisfiability

testing for an effectively propositional formula, to checking instead an equisatis-

fiable set of propositional instances. This equisatisfiability is, precisely, what the

property of validity asks for.

Unfortunately, however, not any ground restriction method can be so easily

integrated with generalisation. From linking restrictions of Section 4.2.3, in par-

ticular the positional linking restriction, i.e. Algorithm 4.3, from Schulz (2002)

and implemented in eground, one can easily define the following sort inference

function.

Algorithm 7.2 (Positional sort inference). Given a set of clauses S, and for every

signed predicate position of the form s.i, build as in Algorithm 4.3 the sets Cs.i

of all the constants that appear in a literal with signed predicate s at position i,

or all constant symbols in D if a variable appears in some literal at that position.

For each predicate position p.i, the positional sort inference is defined as the

function that maps each such set S, to the sort assignment Ap.i = Cp.i ∩ C¬p.i.

This sort inference function is clearly also valid. It works by the observation

that literals which are not compatible with the generated sort assignment would

be pure, i.e. they only appear in one of the two possible phases, and so they can

be discarded. However, this sort inference function is not stable, as the following

example shows.

Example 7.1. Consider the following satisfiable set of clauses S:

p(a)

¬p(x) ∨ q(x)

¬q(b)
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The positional sort would have Ap.1 = {a}, Aq.1 = {b}, and the restricted set S|A
is simply {p(a),¬q(b)}. Note that, however, adding the clause

¬p(a) ∨ p(x)

which is part of JAK, would cause Ap.1 = D = {a, b} —because now a variable

appears in p(x) on both positive and negative phases— making the sort inference

function unstable and rendering the set of clauses S ∪ JAK unsatisfiable.

In this section we have shown how a sort inference method, as proposed by

Claessen and Sörensson (2003), can be used together with the generalisation in-

ference rule in order to make it more easily applicable in practise. In the following

we give, in the form a theoretical result, some evidence on why combining gener-

alisation with resolution is likely to produce a powerful reasoning system.

Generalisation vs resolution

In this section, and in order to further motivate the use of the generalisation

inference rule in combination with resolution, we show a family of formulae which,

similar to the one given in Section 7.2.1, shows that refutations can become

exponentially shorter when combining resolution with the generalisation inference

rule. For doing so we will show an example of a series of unsatisfiable sets of

clauses S1, . . . , Sn such that the length of shortest resolution refutation of Sn is

exponential in n, while using both generalisation and resolution it is possible to

find a refutation of size quadratic in n. In the following we will use xi to represent

variables, bi and ci for constant symbols, as well as si and ti for arbitrary terms.

Definition 7.5. Take a logic whose language has a set of constant symbols B =

{0, 1} and let n be a non-negative number. For every i, with 0 ≤ i ≤ n, there is

a pair of predicate symbols pi and qi both of arity i.

Now let Sn be the set of clauses that contains: the clause

p0 , (7.7)

2n clauses, two for every 0 ≤ i < n, of the form

pi(x1, . . . , xi)→ pi+1(x1, . . . , xi, 0) , (7.8)

pi(x1, . . . , xi)→ pi+1(x1, . . . , xi, 1) ,
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the clause

pn(x1, . . . , xn)→ qn(x1, . . . , xn) , (7.9)

n claques, one for every 0 ≤ i < n, of the form

qi+1(0, xi, . . . , xn) ∧ qi+1(1, xi, . . . , xn)→ qi(xi, . . . , xn) , (7.10)

where i = n− i+ 1, and the clause

q0→⊥ . (7.11)

Moreover, we will assume that generalisation inferences are applied with respect

to the trivial sort assignment that simply maps every predicate position to the

domain set B = {0, 1}. �

Intuitively, clauses of the form (7.8) encode the fact that if pi(b1, . . . , bi) is

true, then pn should be true for all n-bit strings with a prefix of b1, . . . , bi. A dual

of this is encoded by clauses of the form (7.10): if qi(bi, . . . , bn) is false, then qn

should be false for some n-bit string with a suffix of bi, . . . , bn.

From clauses (7.7) and (7.8) we get that pn(b1, . . . , bn) is true for all n-bit

strings. Then from (7.9) that qn(b1, . . . , bn) is also true for all n-bit strings and,

therefore from (7.10), the atom q0 should be true. But this causes a contradiction

with (7.11), so the set Sn is unsatisfiable.

Indices in variables and terms have been chosen to enforce the prefix and

suffix intuition of these predicate symbols. Formally, in the atoms pi(t1, . . . , ti)

and qi(ti, . . . , tn), we say that the position of the term ti is the i-th bit position.

Note that in all clauses of Sn, the variable xi only appears at the i-th bit position

of an atom.

Theorem 7.3. There is a refutation of Sn, using both generalisation and resolu-

tion inference rules, which is of size quadratic in n.

Proof. We start our refutation with the clause (7.7) which is the fact p0. Observe

now that it is possible to extend a proof of

pi(x1, . . . , xi) (7.12)

to a proof of

pi+1(x1, . . . , xi, xi+1) (7.13)
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by adding a constant number of steps.

To do this, first apply a generalisation inference on the pair of clauses (7.8)

to obtain

pi(x1, . . . , xi)→ pi+1(x1, . . . , xi, xi+1) ,

and then resolve this with (7.12) to obtain (7.13).

After n iterations of this procedure we get a proof of pn(x1, . . . , xn) whose

length is linear in n. Now, resolve this with (7.9) to obtain qn(x1, . . . , xn). Observe

now that we can extend a proof of

qi+1(xi−1, xi, . . . , xn) (7.14)

to a proof of

qi(xi, . . . , xn) (7.15)

by adding a constant number of steps.

To do this, simply resolve (7.14) with (7.10) to obtain

qi+1(1, xi, . . . , xn)→ qi(xi, . . . , xn) ,

and again with (7.14) to finally obtain (7.15).

After n of such iterations we end with a proof of q0 which is also of length

linear in n. Finally resolving q0 with (7.11) we obtain a refutation of Sn. Since

the size of each clause in the refutation is also linear in n, the size of the refutation

is quadratic in n. �

The following is the main theorem of this section. It shows that, using res-

olution alone, even the shortest refutation is of length at least exponential in n.

We will now give the formal statement of this theorem, and a short sketch of its

proof. The rest of this section will fill in all the details left out in this sketch.

Theorem 7.4. A resolution refutation of Sn has a length of, at least, 2n.

Sketch of proof. To prove that any refutation of Sn has at least an exponential

length, we will introduce a function on sets of clauses that, in a way, measures

the accumulated progress achieved step by step on a refutation.

This work function, denoted by w, will map the set of clauses occurring in a

partial proof Γ to the set of n-bit strings which, intuitively, have already been
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consumed while trying to build a refutation. This function should moreover

satisfy w(Sn) = ∅, while the work of any refutation Γ is w(Γ) = Bn.

It is then only left to show that, if a partial proof Γ′ is extended to another Γ

by an application of a resolution inference step, then w(Γ) will include, at most,

one element of Bn which was not already in w(Γ′). From this it follows that any

refutation, which would have to include all elements in Bn one by one, has at

least an exponential length. �

In order to fill in the details of this proof, we first have to identify the kind

of clauses that appear in a refutation of Sn. We claim that, indeed, only two

different kinds of clauses are possible. In the following description recall that xi

is used to represent variables, bi and ci are constant symbols, while si and ti are

arbitrary terms. Then, the first group I contains Horn clauses of the form

[pi(x1, . . . , xi)]→ pj (x1, . . . , xi, bi+1, . . . , bj ) (7.16)

[pi(x1, . . . , xi)]→ qn(x1, . . . , xi, bi+1, . . . , bn) (7.17)

where the first literal is optional and, if present in (7.16), then i < j.

The second group II are Horn clauses of the form

l1 ∧ · · · ∧ lm→ h (7.18)

where

• the head h is either ⊥, or a literal qi(ti, . . . , tn) with i < n,

• the body of the clause can be empty and, if it is not, each literal should be

either of the form

– qj(cj, . . . , ci−1, ti, . . . , tn) where j > i, or

– pj(s1, . . . , sj) where, for every i ≤ k ≤ j, sk = tk. That is, if the

sequence of indices 1, . . . , j and i, . . . , n overlap, then the terms in this

atom must agree with the corresponding terms in the head.

If a literal in the body of a clause has a predicate symbol pj for some j < i,

i.e. its sequence of terms does not overlap with those in the head, then we

say that the literal is inactive. All other literals are active.
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In the following we use the notation 〈S〉 to denote the closure of a set of

clauses S with respect to the resolution inference rule.

Proposition 7.1. All clauses in 〈Sn〉 are either of type I or type II.

Proof. Clauses (7.7), (7.8) and (7.9) are of type I, while (7.10) and (7.11) are of

type II. It is also not hard to verify that resolving two clauses of type I yields

another clause of type I. While resolving a clause of type II with any of type I or

II, the result is still of type II.

Note, in particular, that the empty clause ⊥ is of type II. �

We now introduce the notion of another property, which all clauses in the set

〈Sn〉 must satisfy, and that will be very helpful in the proof of our claim.

Definition 7.6. A clause in this logic is safe if: when a variable xi appears

somewhere in the clause, then it appears in all the literals of the clause and

always at the i-th bit position. �

Note that all clauses in the set Sn are safe. Moreover, when resolving two safe

clauses with an unifier σ, and since each variable xi is only allowed to appear at

the i-th bit position, there is no need for the substitution σ to rename variables in

order to perform the resolution inference; the substitution needs to map, at most,

variables to constant symbols. We say that a substitution is a ground substitution

if it maps each variable either to itself or to a constant symbol. In the following,

unless stated otherwise, we assume that all substitutions are ground substitution.

In particular, we also have the following remark.

Remark. If a clause C is safe, then all its instances Cσ, where σ is a ground

substitution, are also safe.

Lemma 7.2. If two safe clauses C1 and C2 are resolved together, the result is a

safe clause.

Proof. Suppose that C1 and C2 were resolved with a unifier σ on a pair of literals

l1σ = ¬l2σ = l to obtain a clause C. Recall that, since the clauses are safe, we

can moreover assume that σ is an ground substitution.

So, if a variable xi appears in C, it must also appear either in C1σ or C2σ and,

therefore, also in the literal l. But again, it must therefore appear in all literals

of both C1σ and C2σ. And, since literals in C are a subset of those, it implies

that C is also safe. �
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Corollary 7.2. All clauses in 〈Sn〉 are safe.

Proof. The result easily follows from the previous lemma and the fact that all

clauses in Sn are safe. �

Corollary 7.3. Let C be a clause of type II in 〈Sn〉. If C has an inactive atom,

then the clause is ground.

Proof. Let l be the inactive atom in C and h its head. Suppose that there is a

variable xi in h. Since the clause is safe, this variable should also appear in l at

the i-th bit position. But this is not possible since, because the terms in l and

h do not overlap, there is no i-th bit position in l! It must therefore be the case

that there are no variables in h, nor anywhere else in the clause. �

We will now proceed to define the work function as anticipated earlier in the

sketch of the proof.

Definition 7.7. Given a term t we define the set t̂ ⊆ B as the set of ground

instances of t, i.e.

t̂ =


{0} t = 0,

{1} t = 1,

{0, 1} t is a variable.

Then, given a clause C of type II with head qi(ti, . . . , tn), we first define the work

of every literal l, a subset of Bn, as follows:

w(l) =



Bn l = ⊥,

Bn−j × t̂j × · · · × t̂n l = qj(tj, . . . , tn),

t̂1 × · · · × t̂n l = pj(t1, . . . , tj) for an active l,

∅ if l is inactive.

We also let wc(l) = Bn \ w(l). So, the work of C is defined as

w(C) = wc(l1) ∩ · · · ∩ wc(lm) ∩ w(h) (7.19)

For clauses of type I we let w(C) = ∅. Finally, the work of a set of clauses is the

union of the work of each clause in the set. �

Remark. If l is a literal in a clause of type II and σ is a substitution, then

w(lσ) ⊆ w(l).
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The following definition and lemmas will be helpful to prove some important

property of the work function, namely Corollary 7.4, which states that, for any

substitution σ and a clause C in a refutation of Sn, w(Cσ) = w(C).

Definition 7.8. We say that a clause C of type II is complete if

w(l1) ∪ · · · ∪ w(lm) = w(h) ,

and all the sets w(l1), . . . , w(lm) are pairwise disjoint.

In the following we will use

w(l1) ] · · · ] w(lm) = w(h) ,

to denote this union in order to emphasise the fact that its operands are disjoint.

�

Remark. If a clause C is complete then its work is empty. From this, and the fact

that all clauses in Sn are either of type I or complete clauses of type II, it follows

that w(Sn) = ∅.
On the other hand, the work of the empty clause, and therefore by any refu-

tation of Sn, is w(⊥) = Bn.

Lemma 7.3. Let C be a clause of type II in 〈Sn〉, and let σ be a substitution. If

the clause C is complete then Cσ also is.

Proof. Suppose that C is of the form (7.18). The fact that the collection of sets

w(l1σ), . . . , w(lmσ) is disjoint follows easily since, by hypothesis, the collection

of sets w(l1), . . . , w(lm) was disjoint and we are now replacing each w(lk) with a

smaller set w(lkσ).

We now proceed to show that

w(l1σ) ] · · · ] w(lmσ) ⊆ w(hσ) . (7.20)

Let b̄ = (b1, . . . , bn) be an element in the left hand side of (7.20), it must then be

the case that b̄ ∈ w(lkσ) ⊆ w(lk) for some k. Since C is complete, then we must

also have b̄ ∈ w(h). Now suppose that b̄ ∈ w(h) but b̄ /∈ w(hσ), it must be the

case that σ maps some variable xi to the wrong bit, i.e. σ(xi) = 1 − bi. There

is however a contradiction since, from Corollary 7.2, the clause C is safe and the
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variable xi should also appear in lk where it would also be mapped to the wrong

bit. Therefore b̄ ∈ w(hσ), the right hand side of (7.20).

The proof for the converse, that an item in the right hand side must also be

in the left hand, is analogous. �

Lemma 7.4. Let C be a clause of type II in 〈Sn〉. If C is non-ground, then it is

also complete.

Proof. The proof is by induction on the length of the derivation of C. For the

base case it is easy, and enough, to verify that all clauses of form (7.10) are

complete.

Suppose that C is obtained from a pair of clauses of types I and II:

C1σ : l′1→ l1

C2σ : l1 ∧ l2 ∧ · · · ∧ lm→ h

C : l′1 ∧ l2 ∧ · · · ∧ lm→ h

Since both C and C2σ are safe, and because C is non-ground, there must be a

variable in h which is also in l1. From this both C1σ and C2σ, as well as C1

and C2, are all non-ground. Moreover, since C1 is not ground and of type I, its

body should not be empty. Now, by inductive hypothesis, C2 is complete and,

by Lemma 7.3, C2σ also is. Therefore

w(l1) ] · · · ] w(lm) = w(h) .

Also, since both C and C2σ are non-ground and from Corollary 7.3, they do not

contain inactive atoms. In particular both l1 and l′1 should be active literals and,

since the terms in l′1 are just a prefix of those in l1, w(l1) = w(l′1).

Suppose that, otherwise, C is obtained by resolving two clauses of type II:

C1σ : l′1 ∧ · · · ∧ l′m′ → l1

C2σ : l1 ∧ l2 ∧ · · · ∧ lm→ h

C : l′1 ∧ · · · ∧ l′m′ ∧ l2 ∧ · · · ∧ lm→ h

As in the previous case, both C1 and C2 most be non-ground, and all its literals
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are active. Therefore, by induction,

w(l′1) ] · · · ] w(l′m′) = w(l1)

w(l1) ] w(l2) ] · · · ] w(lm) = w(h)

which are easily combined to obtain the desired result. �

Corollary 7.4. Let C be any clause in 〈Sn〉 and let σ be a substitution. It then

follows that w(Cσ) = w(C).

Proof. The result is trivial for clauses of type I which have an empty work. Also,

if C is ground, then Cσ = C and the result is again trivial.

For a non-ground clause C of type II we have, from Lemma 7.4, that C is

complete and, from Lemma 7.3, that Cσ is also complete. From previous remarks

it follows that both w(C) = w(Cσ) = ∅. �

We are now ready to prove the core result needed in the proof of our claim,

namely that the work function increments only one element at a time during

each step in a refutation of Sn. The following definition serves to formalise this

statement.

Definition 7.9. Let Γ = C1, . . . , Cm be a sequence of clauses. The work incre-

ment of a clause Ck in the sequence is denoted by δ(Ck) and defined as the set

δ(Ck) = w({C1, . . . , Ck}) \ w({C1, . . . , Ck−1}). �

Lemma 7.5. Let Γ be a resolution derivation of a clause C from Sn. Then, for

every n-bit string b̄ ∈ w(Γ) there is a clause Ck in Γ with δ(Ck) =
{
b̄
}
.

Proof. The proof is by induction on the length of Γ. When the length is 1, then

the clause C is in Sn, w(Γ) = ∅ and the result is trivial.

Suppose that otherwise Γ = Γ′, C, for a non-empty sequence Γ′. Take an

element b̄ ∈ w(Γ). If b̄ ∈ w(Γ′) then, by induction, there is a clause Ck in the

sequence Γ′ with δ(Ck) =
{
b̄
}
. In the following suppose that, otherwise, the

element b̄ /∈ w(Γ′) and, as a consequence b̄ ∈ δ(C) ⊆ w(C).

Now, C is not of type I or a hypothesis in Sn since, for those clauses, we know

that w(C) = ∅ while b̄ ∈ w(C). The only remaining cases are when C is a clause

of type II obtained by resolving two other clauses C1 and C2 in Γ′ with a unifier

σ.
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Suppose that C is the result of resolving two clauses of types I and II.

C1σ : [l′1]→ l1

C2σ : l1 ∧ l2 ∧ · · · ∧ lm→ h

C : [l′1] ∧ l2 ∧ · · · ∧ lm→ h

Since b̄ ∈ w(C) we get that, in particular, b̄ ∈ wc(l2) ∩ · · · ∩ wc(lm) ∩ w(h).

However, since b̄ /∈ Γ′ also b̄ /∈ w(C2) and, by Corollary 7.4, b̄ /∈ w(C2σ). So it

must therefore be the case that b̄ /∈ wc(l1) or, equivalently, b̄ ∈ w(l1). In particular

we have shown that δ(C) ⊆ w(l1). Since by hypothesis δ(C) is not empty, and

since w(l1) has at most one element (the predicate symbol in l1 is either pj or

qn), it must be the case that δ(C) = w(l1) =
{
b̄
}
. So C is the clause for which

the increment was exactly
{
b̄
}
.

Suppose that otherwise C is the result of resolving two clauses of types II.

C1σ : l′1 ∧ · · · ∧ l′m′ → l1

C2σ : l1 ∧ l2 ∧ · · · ∧ lm→ h

C : l′1 ∧ · · · ∧ l′m′ ∧ l2 ∧ · · · ∧ lm→ h

Exactly as in the previous case we get, since b̄ ∈ w(C), that b̄ ∈ w(l1). Now,

however, from b̄ ∈ w(C) we also get b̄ ∈ wc(l′1)∩ · · · ∩wc(l′m′) and, from this, that

b̄ ∈ w(C1σ) = w(C1) ⊆ w(Γ′), contradicting one of our hypothesis. �

The proof of our main Theorem 7.4 now follows as a simple corollary of the

previous lemma.

Corollary 7.5. A resolution refutation of Sn has a length of, at least, 2n.

Proof. Let Γ be a refutation of Sn. It contains the empty clause and, therefore,

its work is w(Γ) = Bn. Now, from Lemma 7.5, for each element b̄ ∈ Bn there is a

clause C in Γ for which δ(C) =
{
b̄
}
. But this implies that there must be at least

2n clauses in Γ, one for each such b̄. �

7.2.3 Results and conclusions

This section includes several interesting theoretical results, in the context of rea-

soning within effectively propositional logic. First, we proved that resolution
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can be, in principle, exponentially more efficient when applied directly at this

level rather than the lower propositional setting. In particular we gave a family

of unsatisfiable formulae whose refutation proofs using first-order resolution are

exponentially shorter than any propositional resolution proof.

Another pair of results, in the context of our proposed generalisation inference

rule, state sufficient conditions in order to combine sort inference mechanisms

with the inference rule itself. Finally, we also proved that, when resolution is

combined with generalisation, the resulting inference system can produce, as

well, exponentially shorter refutations for unsatisfiable formulae. This set of

results provide, we believe, compelling evidence of the advantages that directly

reasoning at the effectively propositional can provide.

7.3 Concluding remarks

In this chapter we have explored several reasoning techniques that are applicable

to effectively propositional formulae. First, we briefly described some original

ideas which provide some improvements in the context of grounding-based meth-

ods. These are presented in support of our claim that, in order to develop better

propositional encodings, a generic translation from effectively propositional to

propositional logic is also a suitable approach.

Then we also proposed, as one of the main contributions of this thesis, a

new inference rule which we call generalisation and that is able to exploit sort

information while reasoning directly within effectively propositional logic. We

show how some existing sort inference techniques, such as those developed for

grounding-based approaches, can be directly applied in this context; while some

others, particularly based on linking restrictions, cannot be imported as easily.

We also show that resolution is exponentially more efficient at the effectively

propositional, rather than just propositional, level; and, moreover, the combina-

tion of resolution with generalisation yields a further exponential improvement.

This serves to suggest that the use of an effectively propositional encoding is

useful not only to obtain a more compact representation of problems, but also to

solve them more efficiently.

Incidentally, the proofs of these two exponential gaps provide us with a couple

of benchmark families that might be interesting to test with existing systems. We

have shown that, when reasoning with a particular inference system, some unsat-
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isfiable problems have rather short refutations, but are existing implementations

of theorem provers able to find such short proofs? Or, which heuristics can we

use in order to find these shorter proofs with more probability?

Further directions for future work include the research on techniques to effi-

ciently implement and integrate the proposed generalisation inference rule with

other systems which already make use of resolution, such as iProver or perhaps

even Vampire. Alternatively, it might also prove fruitful to investigate on pos-

sible extensions of this inference rules in order to make use of complete linking

information which can perhaps better describe the underlying structure of the

problem being solved.
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Discussion

We finalise this thesis with a summary of the research work carried out, and an

appraisal on the evidence that has been gathered to support our main hypothesis.

First an overview of the thesis is given, evaluating the degree to which the stated

research aims and objectives were achieved. Then, the major thesis contributions

are brought out, highlighting the extent of the research community for which this

work will be most interesting. Finally, some directions for future work are also

pointed out.

8.1 Thesis overview

The main objective of this thesis was to explore whether the language of effectively

propositional logic is a suitable alternative to succinctly and naturally encode

problems from different application domains. Moreover, we argue that reasoning

and solving problems in this language offers the possibility to more easily exploit

the structure that usually arises in problems derived from applications.

Substantial evidence is presented in order to support this claim. In particu-

lar, two case studies are developed where applications from model checking and

planning are encoded using the proposed language. The resulting logical en-

codings are often exponentially shorter than standard encodings in propositional

logic that have been commonly used and accepted by the research community.

Finally, we also analyse and give some evidence on how reasoning at the effec-

tively propositional, rather than just propositional, level is also potentially more

efficient.

183
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8.2 Impact of major contributions

In this section we highlight four of the major contributions of this thesis. The

first of such contributions is the development of a method to randomly generate

non-clausal propositional formulae which are difficult for propositional reason-

ers to solve. The second comprises a couple of case studies on how to encode

problems from different application domains by using the language of effectively

propositional logic. The third is, as a by product of the previous contribution

and other ideas explored in this thesis, a set of effectively propositional bench-

marks which have been made available to the research community. Finally, the

last contribution deals with the formal study and comparison of inference rules

and reasoning techniques in the context of effectively propositional logic.

8.2.1 Hard non-clausal propositional problems

In Chapter 3, particularly Section 3.1, we discussed a method to randomly gen-

erate propositional problems. These problems have, as opposed to other popular

methods for generating random formulae, a non-trivial structure which is built on

top of an alternating tree of conjunctions and disjunctions. Therefore, by nature,

these problems are originally non-clausal and suitable for testing systems able to

handle problems which have been described using this more general syntax. A

tool to generate these problems, written in C++, has also been made available

online for the research community to use.1

The proposed method should be of great interest to researchers —such as

Thiffault et al. (2004), Giunchiglia and Sebastiani (2000) and Stachniak (2002)—

implementing solvers and developing ideas in order to directly read and process

non-clausal formulae. Muhammad and Stuckey (2006) have, in fact, already used

our proposed method to evaluate the performance of their stochastic non-clausal

solver. Our work was also found relevant in the constraint programming commu-

nity, who have listed our method as an approach to randomly generate formulae

in a handbook of their research area (Gomes and Walsh, 2006). There is also

interest from people in theoretical computer science; such as Santillán Rodŕıguez

(2007) who computed tighter bounds for the phase transition region of our ran-

dom model, where the most difficult problems are expected to be found.

1http://www.cs.man.ac.uk/~navarroj/tools/

http://www.cs.man.ac.uk/~navarroj/tools/
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8.2.2 Effectively propositional encodings

Another of our main contributions, developed in Chapters 5 and 6, are two case

studies of how to encode applications, respectively from the model checking and

planning domains, as effectively propositional formulae. An empirical evaluation

of how this technique compares to other alternative approaches is also carried

out. The results obtained are encouraging and show that, although there is still

a lot of room for improvement, the proposed approach is competitive with other

existing procedures.

As a valuable product of our research we also devised the finite domain pred-

icate logic which, adding syntactic sugar on top of the effectively propositional

language, allows to even more easily and naturally describe constructs often re-

quired when modelling application domains. This goes in line with the idea of

encoding individual applications into a feature rich high level language, and then

design very efficient and optimised translations into lower level languages such as

effectively propositional or even propositional logic.

Researchers from many diverse areas, within or even outside computer sci-

ence, might find this as a useful technique to quickly prototype and experiment

with logic-based reductions of the problems that they typically encounter within

their respective application domains. On the other hand, researchers in auto-

mated reasoning can concentrate their efforts on designing generic translation

tools and developing highly optimised provers without worrying too much about

the particular details of each individual application.

8.2.3 Benchmarks for effectively propositional provers

As a side effect of our work showcasing encodings of application problems into

the language of effectively propositional logic, we had to actually generate many

of those problems. And the research community, particularly people such as

Baumgartner et al. (2005) and Ganzinger and Korovin (2003) which are actively

working on the development of decision procedures for this logic, were very fond

of having access to these benchmarks.

We have made available a tool, smv2tptp written in C++, to translate LTL

properties and a subset of the SMV model checking language into effectively

propositional formulae using the procedure described in Chapter 5. A number

of simple Perl scripts that generate particular classes of formulae, such as those
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in Sections 6.3, 7.2.1 and 7.2.2, were also made available online for the research

community to use.2

A number of premade benchmarks, created by selecting adequate parameters

on these tools to obtain problems of increasing difficulty suitable for testing this

and next generation provers, were also packed for more accessible consumption

by system developers. Moreover, in order to make them even more widespread

available for the automated reasoning community, these generated benchmarks

will be also distributed as part of the TPTP v3.4.0 in the HWV domain of the

problem library for theorem provers (Sutcliffe and Suttner, 2007).

8.2.4 Effectively propositional reasoning techniques

Finally, another contribution of this thesis is a formal analysis and comparison

among different reasoning techniques, presented in Section 7.2, that are directly

applied among effectively propositional clauses. We show, for example, how res-

olution can be exponentially more efficient on finding refutations in effectively

propositional logic compared to plain propositional logic.

We also propose a new inference rule, which we call generalisation, that is

a suitable complement to resolution and other reasoning strategies. Essentially,

the inference of generalisation allows one to derive a general property after it has

been individually proved for all the (finite amount of) constant symbols in an

appropriate sort. In particular, we show that standard sort inference techniques

can be used to compute these appropriate sorts and, moreover, that the resulting

inference rule is compatible with resolution. In fact, we also show that gener-

alisation and resolution combined can also be exponentially more efficient than

resolution alone.

Although we do not pursue any research on an efficient implementation of the

generalisation inference rule —since this lies beyond the intended scope of the

thesis— we do think that the theoretical results obtained are encouraging and

of great value for the automated reasoning community, who can now incorporate

these ideas in the design of new systems. It is also worth noting that, although

we only explored the use of these inference rules in the context of effectively

propositional logic, they can be certainly applied and extended to more general

settings such as full first-order logic.

2http://www.cs.man.ac.uk/~navarroj/tools/

http://www.cs.man.ac.uk/~navarroj/tools/


8.3. Future work 187

8.3 Future work

Research on effectively propositional logic is, indeed, a rather new venture. This

thesis makes, by providing the required benchmarks and some early theoretical

results, an effort to encourage the community and accelerate the development of

new techniques in this area. There are, therefore, many research directions open

to explore and ideas to investigate.

To begin with, in the propositional case, more studies are needed on the

impact that clausal form translations have on the difficulty of solving a problem.

Surprisingly, very little seems to have been done in this respect. While it is

widely known that satisfiability solvers are very sensitive to little variations in

the problem encoding, it is not yet clear what should one aim for in order to

design a good encoding. Section 3.2 tries to shed some light on these issues but,

definitively, much more work is needed.

More research on how to extend satisfiability solvers to deal with arbitrary

formulae or, at least, with extended kinds of constraints also would be very valu-

able. In particular designing methods to efficiently deal with predicates that have

a function-like behaviour, which are very common in translations from applica-

tions in effectively propositional formulae, should be of great use to improve on

current technology. In general, finding better reductions of effectively proposi-

tional into plain propositional logic looks like a fruitful area for future work.

A second direction for research in the future involves the reduction of even

more applications into the language of effectively propositional logic. To start,

in the field of model checking one can consider reductions of temporal logics

more general than LTL, and larger fragments of SMV that include many more

of the available features. On planning problems there is also a great room for

improvement, translations are needed which are able to handle more than the

most basic STRIPS syntax.

Applications where the use of satisfiability solvers has already been found

useful are other natural candidates to benefit from these ideas, as well as any

kind of problem which can be reduced to some form of reasoning or combinatorial

search. Interaction with the also emerging community of satisfiability modulo

theories (see e.g. Tinelli, 2002) is also perhaps necessary in order to support more

complex features —such as theories of arrays, bit vectors, integers and reals—

which are often needed while modelling many application domains.

Finally, another venue for future research work is to further the development of
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reasoning tools for effectively propositional formulae. First, more theory is needed

about deduction and properties of inference rules. An important question, left

open in this thesis, is how to combine the generalisation and resolution inference

rules in order to devise a decision procedure for effectively propositional logic, a

semi-decision procedure for first-order logic, or perhaps even both.

Then, research on how to efficiently implement these decision procedures, or

to optimise existing ones such as the model evolution or instantiation calculi,

would also help to improve the state of the art. Moreover, designing translators

from feature rich languages into lower level formalisms will facilitate to people

from other disciplines to more easily and quickly incorporate reasoning services

into their applications, thus also widening the reach of our technology.
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Juan Antonio Navarro Pérez. Encodings of bounded LTL model checking in

effectively propositional logic. In ARW’07: Proceedings of the Workshop on

Automated Reasoning, London, U.K., April 2007.
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Roćıo Santillán Rodŕıguez. New upper bounds for the SAT/UNSAT threshold

for shapes. Master’s thesis, Vienna University of Technology, June 2007.

JMP, Version 7. SAS Institute Inc., Cary, NC, USA, 2007.

L. K. Schubert. Monotonic solution of the frame problem in the situation calculus:

An efficient method for worlds with fully specified actions. In H. Kyburg,

R. Loui, and G. Carlson, editors, Knowledge Representation and Defeasible

Reasoning, pages 23–67. Kluwer Academic Publishers, Dordrecht, Netherlands,

1990.

Stephan Schulz. A comparison of different techniques for grounding near-

propositional CNF formulae. In Susan Haller and Gene Simmons, editors,

FLAIRS’02: Proceedings of the Fifteenth International Florida Artificial Intel-

ligence Research Society Conference, pages 72–76. AAAI Press, 2002.

Bart Selman, Hector Levesque, and David G. Mitchell. A new method for solving

hard satisfiability problems. In AAAI’92: Proceedings of the Tenth National

Conference on Artificial Intelligence, pages 440–460, San Jose, CA, USA, July

1992. AAAI Press / MIT Press.

Bart Selman, Henry Kautz, and Bram Cohen. Noise strategies for improving

local search. In AAAI’94: Proceedings of the Twelfth National Conference on

Artificial Intelligence, Seattle, WA, USA, July 1994. AAAI Press.



Bibliography 205

Maria Sorea. Bounded model checking for timed automata. In MTCS’02: Pro-

ceedings of the Third Workshop on Models for Time-Critical Systems, heldt

at CONCUR 2002, volume 68 of Electronic Notes in Theoretical Computer

Science. Elsevier, 2002.

Zbigniew Stachniak. Going non-clausal. In SAT’02: Proceedings of the 5th In-

ternational Symposium on Theory and Applications of Satisfiability Testing,

Cincinnati, OH, USA, 2002.

P. Stephan, Robert K. Brayton, and A. Sangiovanni-Vincentelli. Combinational

test generation using satisfiability. IEEE Transactions on Computer-Aided De-

sign of Integrated Circuits and Systems, 15:1167–1176, September 1996.

O. Strichman. Accelerating bounded model checking for safety properties. Formal

Methods in System Design, 24(1):5–24, 2004.

Sathiamoorthy Subbarayan and Dhiraj K. Pradhan. NiVER: Non increasing

variable elimination resolution. In SAT’04: Proceedings of the 7th International

Conference on Theory and Applications of Satisfiability Testing, number 3542

in Lecture Notes in Computer Science, pages 351–356, Vancouver, Canada,

May 2004. Springer.

Geoff Sutcliffe. The CADE-20 Automated Theorem Proving Competition. AI

Communications, 19(2):173–181, 2006.

Geoff Sutcliffe. The CADE-21 ATP system competition website, 2007. URL

http://www.cs.miami.edu/~tptp/CASC/21/.

Geoff Sutcliffe and Christian B. Suttner. The state of CASC. AI Communications,

19(1):35–48, 2006.

Geoff Sutcliffe and Christian B. Suttner. Website of the TPTP problem library for

automated theorem proving, 2007. URL http://www.cs.miami.edu/~tptp/.

Geoff Sutcliffe and Christian B. Suttner. The TPTP problem library: CNF release

v1.2.1. Journal of Automated Reasoning, 21(2):177–203, 1998.

Geoff Sutcliffe, Christian B. Suttner, and Francis Jeffry Pelletier. The IJCAR

ATP System Competition. Journal of Automated Reasoning, 28(3):307–320,

2002.

http://www.cs.miami.edu/~tptp/CASC/21/
http://www.cs.miami.edu/~tptp/


206 Bibliography

Christian Thiffault, Fahiem Bacchus, and Toby Walsh. Solving non-clausal for-

mulas with DPLL search. In SAT’04: Proceedings of the 7th International

Conference on Theory and Applications of Satisfiability Testing, number 3542

in Lecture Notes in Computer Science, pages 663–678, Vancouver, Canada,

May 2004. Springer.

Cesare Tinelli. A DPLL-based calculus for ground satisfiability modulo theo-

ries. In Sergio Flesca, Sergio Greco, Giovambattista Ianni, and Nicola Leone,

editors, JELIA’02: Proceedings of the European Conference on Logics in Arti-

ficial Intelligence, number 2424 in Lecture Notes in Computer Science, pages

308–319, Cosenza, Italy, September 2002. Springer. ISBN 3-540-44190-5.

Dave A. D. Tompkins and Holger H. Hoos. UBCSAT: An implementation and

experimentation environment for SLS algorithms for SAT and MAX-SAT. In

SAT’04: Proceedings of the 7th International Conference on Theory and Ap-

plications of Satisfiability Testing, number 3542 in Lecture Notes in Computer

Science, Vancouver, Canada, May 2004. Springer.

Grigori S. Tseitin. On the complexity of derivation in propositional calculus.

Studies in Constructive Mathematics and Mathematical Logic, Part II, 1968.

Allen van Gelder. Combining preorder and postorder resolution in a satisfiability

solver. In Henry Kautz and Bart Selman, editors, SAT’01: Proceedings of the

4th International Workshop on Theory and Applications of Satisfiability Test-

ing, held at the 16th Annual IEEE Symposium on Logic in Computer Science

(LICS’01), volume 9 of Electronic Notes in Discrete Mathematics, Boston, MA,

USA, June 2001. Elsevier.

Miroslav N. Velev and Randal E. Bryant. Effective use of boolean satisfiability

procedures in the formal verification of superscalar VLIW microprocessors. In

DAC’01: Proceedings of the 38th Conference on Design Automation, pages

226–231, Las Vegas, NV, USA, June 2001.

Christoph Weidenbach, Bernd Gaede, and Georg Rock. SPASS & FLOTTER

version 0.42. In CADE-13: Proceedings of the 13th International Conference

on Automated Deduction, pages 141–145, London, U.K., 1996. Springer. ISBN

3-540-61511-3.



Bibliography 207

Poul Frederick Williams, Armin Biere, Edmund M. Clarke, and Anubhav Gupta.

Combining decision diagrams and SAT procedures for efficient symbolic model

checking. In E. A. Emerson and A. P. Sistla, editors, CAV’00: Proceedings

of the 12th International Conference on Computer Aided Verification, number

1855 in Lecture Notes in Computer Science, pages 124–138. Springer, July

2000. ISBN 3-540-67770-4.

Hanato Zhang and Mark E. Stickel. An efficient algorithm for unit-propagation.

In ISAIM’96: Proceedings of the Fourth International Symposium on Artificial

Intelligence and Mathematics, Ft. Lauderdale, FL, USA, 1996.

Lintao Zhang and Sharad Malik. The quest for efficient boolean satisfiability

solvers. In CAV’02: Proceedings of the 14th International Conference on Com-

puter Aided Verification, number 2404 in Lecture Notes in Computer Science,

pages 17–36, London, U.K., 2002. Springer. ISBN 3-540-43997-8.

Lintao Zhang and Sharad Malik. Validating SAT solvers using an independent

resolution-based checker: Practical implementations and other applications. In

DATE’03: Proceedings of the Conference on Design, Automation and Test in

Europe, Munich, Germany, March 2003.

Lintao Zhang, Conor F. Madigan, Matthew H. Moskewicz, and Sharad Malik. Ef-

ficient conflict driven learning in a boolean satisfiability solver. In ICCAD’01:

Proceedings of the 2001 IEEE/ACM International Conference on Computer-

Aided Design, pages 279–285, San Jose, CA, USA, 2001. IEEE Computer So-

ciety. ISBN 0-7803-7249-2.


	Abstract
	Declaration
	Copyright
	Acknowledgements
	The author
	Introduction
	Solving problems by translation to logic
	The success of propositional translations
	The effectively propositional alternative
	Contributions of this thesis
	Thesis overview

	Propositional logic
	Syntax and semantics
	Normal forms
	Preprocessing techniques
	The Davis-Logemann-Loveland algorithm
	Unit propagation
	Clause learning
	Clause database management
	Decision heuristics
	Restart strategies

	Stochastic local search
	Chapter summary

	Encoding problems in propositional logic
	Generating hard non-clausal problems
	The fixed clause-length model
	The fixed shape model
	Translation to clausal normal form
	Experimental study
	Related work
	Results and conclusions

	Encoding real-world problems
	An improved clausal form translation
	Using specialised constraints
	Properties of problem encodings
	Results and conclusions

	Concluding remarks

	Effectively propositional logic
	Syntax and semantics
	Grounding-based methods
	Splitting
	Pure predicates
	Linking restrictions
	Sort inference
	Incremental search

	Non-ground reasoning methods
	Resolution calculus
	Model evolution calculus
	Instantiation calculus

	Finite domain predicate logic
	Chapter summary

	Encoding LTL bounded model checking
	Introduction to model checking
	Linear temporal logic
	Kripke structures

	Encoding of temporal properties
	Encoding of the system description
	Evaluation of the approach
	Concluding remarks

	Encoding planning problems
	Introduction to planning
	Encoding of planning problems
	Linear plans
	Plans with parallel actions

	Alternative state-based encoding
	Tower of Hanoi
	A logistics example

	Evaluation of the approach
	Concluding remarks

	Solving problems in effectively propositional logic
	By reduction to propositional logic
	Improving linking restrictions
	Incremental and one-shot methods
	Evaluation of the approach
	Results and conclusions

	Reasoning in effectively propositional logic
	Propositional vs first-order resolution
	The generalisation inference rule
	Results and conclusions

	Concluding remarks

	Discussion
	Thesis overview
	Impact of major contributions
	Hard non-clausal propositional problems
	Effectively propositional encodings
	Benchmarks for effectively propositional provers
	Effectively propositional reasoning techniques

	Future work

	Bibliography

