Distribution of quantifiers over logic connectives

04 Jul 2014

All of the following are valid formulas in classical first-order logic assuming that, in particular, x does not occur free in R.

A   B
∀x(P(x) ∧ Q(x)) (∀xP(x) ∧ ∀xQ(x))
∃x(P(x) ∧ Q(x)) (∃xP(x) ∧ ∃xQ(x))
∀x(P(x) ∨ Q(x)) (∀xP(x) ∨ ∀xQ(x))
∃x(P(x) ∨ Q(x)) (∃xP(x) ∨ ∃xQ(x))
∀x(P(x) → Q(x)) (∃xP(x) → ∀xQ(x))
∃x(P(x) → Q(x)) (∀xP(x) → ∃xQ(x))
∀x¬P(x) ¬∃xP(x)
∃x¬P(x) ¬∀xP(x)
∀x∃yT(x,y) ∃y∀xT(x,y)
∀x∀yT(x,y) ∀y∀xT(x,y)
∃x∃yT(x,y) ∃y∃xT(x,y)
∀x(P(x) ∨ R) (∀xP(x) ∨ R)
∃x(P(x) ∧ R) (∃xP(x) ∧ R)
∀x(P(x) → R) (∃xP(x) → R)
∃x(P(x) → R) (∀xP(x) → R)
∀x(R → Q(x)) (R → ∀xQ(x))
∃x(R → Q(x)) (R → ∃xQ(x))
∀xR R
∃xR R

The following formulas are not valid.

A   B counterexample
∃x(P(x) ∧ Q(x)) (∃xP(x) ∧ ∃xQ(x)) D = {a, b}, M = {P(a), Q(b)}
∀x(P(x) ∨ Q(x)) (∀xP(x) ∨ ∀xQ(x)) D = {a, b}, M = {P(a), Q(b)}
∀x(P(x) → Q(x)) (∃xP(x) → ∀xQ(x)) D = {a, b}, M = {P(a), Q(a)}
∀x∃yT(x,y) ∃y∀xT(x,y) D = {a, b}, M = {T(a,b), T(b,a)}
∃x(P(x) → R) (∀xP(x) → R) D = Ø, M = {R}
∃x(R → Q(x)) (R → ∃xQ(x)) D = Ø, M = Ø
∀xR R D = Ø, M = Ø
∃xR R D = Ø, M = {R}

Note: if empty domains are not allowed, then the last four implications are in fact valid.